- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the value of $x$, if:
(i) $4x = (52)^2 – (48)^2$
(ii) $14x = (47)^2 – (33)^2$
(iii) $5x = (50)^2 – (40)^2$
Given:
(i) $4x = (52)^2 – (48)^2$
(ii) $14x = (47)^2 – (33)^2$
(iii) $5x = (50)^2 – (40)^2$
To do:
We have to find the value of $x$ in each case.
Solution:
Here, we have to find the value of $x$ in each expression. The given expressions are the difference of two squares. So, to find the value of $x$ we can simplify the RHS in each case using the identity:
$(a – b) (a + b) = a^2 – b^2$.
Therefore,
(i) $4x = (52)^2 – (48)^2$
This implies,
$4x=(52+48)\times(52-48)$
$4x=100\times4$
$4x=400$
$x=\frac{400}{4}$
$x=100$
Hence, the value of $x$ is $100$.
(ii) $14x = (47)^2 – (33)^2$
This implies,
$14x=(47+33)\times(47-33)$
$14x=80\times14$
$x=\frac{80\times14}{14}$
$x=80$
Hence, the value of $x$ is $80$.
(iii) $5x = (50)^2 – (40)^2$
This implies,
$5x=(50+40)\times(50-40)$
$5x=90\times10$
$x=\frac{90\times10}{5}$
$x=90\times2$
$x=180$
Hence, the value of $x$ is $180$.
- Related Articles
- Factorize the following algebraic expressions:(i) $a^2+2a-3$(ii) $a^2+14a+48$(iii) $x^2-4x-21$
- If $a=2$ and $b=-2$ find the value of $(i)$. $a^2+b^2$$(ii)$. $a^2+ab+b^2$$(iii)$. $a^{2}-b^2$
- Find the value of the discriminant.$\sqrt{2}x^2 + 4x +2\sqrt{2} = 0$.
- Simplify:$(x^2-3x + 2) (5x- 2) - (3x^2 + 4x-5) (2x- 1)$
- If $x^2 + y^2 = 29$ and $xy = 2$, find the value of(i) $x + y$(ii) $x - y$(iii) $x^4 + y^4$
- Factorize the following algebraic expressions:(i) $a^2+3a-88$(ii) $a^2-14a-51$(iii) $x^2+14x+45$
- Find the value of the following expressions, when $x=-1$$(i)$. $2x-7$$(ii)$. $-x+2$$(iii)$. $x^2+2x+ 1$$(iv)$. $2x^2-x-2$
- Find the value of$3 x^{2}-2 y^{2}$if x=-2 and y=2
- Factorize the following algebraic expressions:(i) $a^2+4ab+3b^2$(ii) $96-4x-x^2$(iii) $a^4+3a^2+4$
- Write the coefficients of \( x^{2} \) in each of the following:(i) \( 2+x^{2}+x \)(ii) \( 2-x^{2}+x^{3} \)(iii) \( \frac{\pi}{2} x^{2}+x \)(iv) \( \sqrt{2} x-1 \)
- Determine, if 3 is a root of the equation given below:$\sqrt{x^2-4x+3} + \sqrt{x^2-9} = \sqrt{4x^2-14x+16}$
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- If $p(x) = x^2 - 2\sqrt{2}x+1$, then find the value of $p(2\sqrt{2})$.
- Find the value of $36x^2 +49y^2-84xy$ if $x=2, y=-2$.
- If $2x + 3y = 8$ and $xy = 2$, find the value of $4x^2 + 9y^2$.
