# Find the value of the polynomial $5 x-4 x^{2}+3$ at(i) $x=0$(ii) $x=-1$(iii) $x=2$

#### Complete Python Prime Pack for 2023

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack 2023

8 Courses     2 eBooks

To do:

We have to find the value of the polynomial $5 x-4 x^{2}+3$ at

(i) $x=0$
(ii) $x=-1$
(iii) $x=2$

Solution:

To find the value of the polynomial $f(x)$ at $x=a$, we have to substitute $x=a$ in $f(x)$.

Let $f(x)=5 x-4 x^{2}+3$

Therefore,

(i) When $x=0$,

$f(0) = 5 (0)-4 (0)^{2}+3$

$= 0-4 (0)+3$

$= 0-0 + 3$

$= 3$

Hence, the value of the polynomial $5 x-4 x^{2}+3$ at $x=0$ is $3$.

(ii) When $x=-1$,

$f(-1) = 5 (-1)-4 (-1)^{2}+3$

$= -5-4 (1)+3$

$= -5-4 + 3$

$= -9+3$

$=-6$

Hence, the value of the polynomial $5 x-4 x^{2}+3$ at $x=-1$ is $-6$.

(iii) When $x=2$,

$f(2) = 5 (2)-4 (2)^{2}+3$

$= 10-4 (4)+3$

$= 10-16 + 3$

$= 13-16$

$=-3$

Hence, the value of the polynomial $5 x-4 x^{2}+3$ at $x=2$ is $-3$.

Updated on 10-Oct-2022 13:39:07