- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the sums given below:
(i) $7 + 10\frac{1}{2} + 14 + … + 84$
(ii) $34 + 32 + 30 + … + 10$
(iii) $-5 + (-8) + (-11) + ….. + (-230)$
To do:
We have to find the given sums.
Solution:
(i) $a=7, d=10\frac{1}{2}-\frac{7}{1}=\frac{21}{2}-\frac{7}{1}=\frac{21-14}{2}=\frac{7}{2}, a_n=84$
We know that,
$a_n=a+(n-1)d$
$S_{n}=\frac{n}{2}[a+l]$
$a_{n}=a+(n-1) d$
$84=7+(n-1) \frac{7}{2}$
$84-7=(n-1) \frac{7}{2}$
$77(\frac{2}{7})=n-1$
$11(2)=n-1$
$22+1=n$
$n=23$
Therefore,
$S_{n}=\frac{n}{2}[a+l]$
$S_{23}=\frac{23}{2}[7+84]$
$=\frac{23}{2} \times 91$
$=\frac{2093}{2}$
$=1046\frac{1}{2}$
(ii) $a=34, d=32-34=-2, a_n=10$
We know that,
$a_n=l=a+(n-1)d$
$S_{n}=\frac{n}{2}[a+l]$
$a_{n}=a+(n-1) d$
$10=34+(n-1)(-2)$
$10-34=(n-1)(-2)$
$\frac{-24}{-2}=n-1$
$n-1=12$
$n=12+1$
$n=13$
Therefore,
$S_{13}=\frac{13}{2}[34+10]$
$=\frac{13}{2}(44)$
$=13 \times 22$
$=286$
(iii) Here,
$(-5)+(-8)+(-11)+\ldots+(-230)$ is in A.P.
$a=-5, d=-8-(-5)=-8+5=-3$ and $l=-230$
We know that,
$a_{n}=a+(n-1) d$
$\Rightarrow-230=-5+(n-1)(-3)$
$-230=-5-3 n+3$
$3 n=-5+3+230=228$
$n=\frac{228}{3}=76$
$S_{n}=\frac{n}{2}[a+l]$
$=\frac{76}{2}[-5+(-230)]$
$=38(-5-230)$
$=38(-235)$
$=-8930$
Therefore, the sum of the given sequence is $-8930$.  
- Related Articles
- Find the sums given below:\( 7+10 \frac{1}{2}+14+\ldots+84 \)
- Find the sums given below:$34 + 32 + 30 + … + 10$
- Find the sums given below:$-5 + (-8) + (-11) + ….. + (-230)$
- Find the sum:$7 + 10\frac{1}{2} + 14 + ……… + 84$
- Find the sum:$34 + 32 + 30 + ………. + 10$
- Solve:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- (i) 1 - 8(ii) 4 - (-3)(iii) -10 - (-7)
- Find:(i) \( 64^{\frac{1}{2}} \)(ii) \( 32^{\frac{1}{5}} \)(iii) \( 125^{\frac{1}{3}} \)
- Simplify:(i) \( 2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} \)(ii) \( \left(\frac{1}{3^{3}}\right)^{7} \)(iii) \( \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} \)(iv) \( 7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} \)
- Express each of the following as a rational number of the form $\frac{p}{q}$(i) \( -\frac{8}{3}+\frac{-1}{4}+\frac{-11}{6}+\frac{3}{8}-3 \)(ii) \( \frac{6}{7}+1+\frac{-7}{9}+\frac{19}{21}+\frac{-12}{7} \)(iii) \( \frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6} \)(iv) \( \frac{-7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14} \)(v) \( \frac{-7}{4}+\frac{5}{3}+\frac{-1}{2}+\frac{-5}{6}+2 \)
- Arrange the following in descending order:(i) $\frac{2}{9},\ \frac{2}{3},\ \frac{8}{21}$(ii) $\frac{1}{5},\ \frac{3}{7},\ \frac{7}{10}$
- Convert the following fractions into like fractions : $\frac{3}{5} , \frac{7}{10}, \frac{8}{5} and \frac{11}{30}$
- Find the product:$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$$(ii)$. $\frac{3}{10}\times(-9)$$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
- Simplify each of the following and write as a rational number of the form:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
- Write each of the following as decimals:(a) \( \frac{5}{10} \)(b) \( 3+\frac{7}{10} \)(c) \( 200+60+5+\frac{1}{10} \)(d) \( 70+\frac{8}{10} \)(e) \( \frac{88}{10} \)(f) \( 4 \frac{2}{10} \)(g) \( \frac{3}{2} \)(h) \( \frac{2}{5} \)(i) \( \frac{12}{5} \)(j) \( 3 \frac{3}{5} \)(k) \( 4 \frac{1}{2} \)
