- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the following products:
(i) $(x + 4) (x + 7)$
(ii) $(x - 11) (x + 4)$
(iii) $(x + 7) (x - 5)$
(iv) $(x - 3) (x - 2)$
(v) $(y^2 - 4) (y^2 - 3)$
(vi) $(x + \frac{4}{3}) (x + \frac{3}{4})$
(vii) $(3x + 5) (3x + 11)$
(viii) $(2x^2 - 3) (2x^2 + 5)$
(ix) $(z^2 + 2) (z^2 - 3)$
(x) $(3x - 4y) (2x - 4y)$
(xi) $(3x^2 - 4xy) (3x^2 - 3xy)$
(xii) $(x + \frac{1}{5}) (x + 5)$
(xiii) $(z + \frac{3}{4}) (z + \frac{4}{3})$
(xiv) $(x^2 + 4) (x^2 + 9)$
(xv) $(y^2 + 12) (y^2 + 6)$
(xvi) $(y^2 + \frac{5}{7}) (y^2 - \frac{14}{5})$
(xvii) $(p^2 + 16) (p^2 - \frac{1}{4})$
To do:
We have to find the given products.
Solution:
Here, to find the given products we can use distributive property twice.
Distributive Property:
The distributive property of multiplication states that when a factor is multiplied by the sum or difference of two terms, it is essential to multiply each of the two numbers by the factor, and finally perform the addition or subtraction operation.
$(a+b)(c+d)=a(c+d)+b(c+d)$..............(I)
Therefore,
(i) The given expression is $(x + 4) (x + 7)$.
$(x + 4) (x + 7)=x(x+7)+4(x+7)$ [Using (I)]
$(x + 4) (x + 7)=x(x)+x(7)+4(x)+4(7)$
$(x + 4) (x + 7)=x^2+7x+4x+28$
$(x + 4) (x + 7)=x^2+11x+28$
(ii) The given expression is $(x - 11) (x + 4)$
$(x - 11) (x + 4)=x(x+4)-11(x+4)$ [Using (I)]
$(x - 11) (x + 4)=x(x)+x(4)-11(x)-11(4)$
$(x - 11) (x + 4)=x^2+4x-11x-44$
$(x - 11) (x + 4)=x^2-7x-44$
(iii) The given expression is $(x + 7) (x - 5)$
$(x + 7) (x - 5)=x(x-5)+7(x-5)$ [Using (I)]
$(x + 7) (x - 5)=x(x)-x(5)+7(x)-7(5)$
$(x + 7) (x - 5)=x^2-5x+7x-35$
$(x + 7) (x - 5)=x^2+2x-35$
(iv) The given expression is $(x - 3) (x - 2)$
$(x - 3) (x - 2)=x(x-2)-3(x-2)$ [Using (I)]
$(x - 3) (x - 2)=x(x)-x(2)-3(x)+3(2)$
$(x - 3) (x - 2)=x^2-2x-3x+6$
$(x - 3) (x - 2)=x^2-5x+6$
(v) The given expression is $(y^2 - 4) (y^2 - 3)$
$(y^2 - 4) (y^2 - 3)=y^2(y^2-3)-4(y^2-3)$ [Using (I)]
$(y^2 - 4) (y^2 - 3)=y^2(y^2)-y^2(3)-4(y^2)+4(3)$
$(y^2 - 4) (y^2 - 3)=y^4-3y^2-4y^2+12$
$(y^2 - 4) (y^2 - 3)=y^4-7y^2+12$
(vi) The given expression is $(x+\frac{4}{3})(x + \frac{3}{4})$
$(x+\frac{4}{3})(x + \frac{3}{4})=x (x + \frac{3}{4})+\frac{4}{3}(x + \frac{3}{4})$ [Using (I)]
$(x+\frac{4}{3})(x+\frac{3}{4})=x(x)+x(\frac{3}{4})+\frac{4}{3}(x)+\frac{3}{4}(\frac{3}{4})$
$(x+\frac{4}{3})(x+\frac{3}{4})=x^2+x(\frac{3}{4}+\frac{4}{3})+1$
$(x+\frac{4}{3})(x+\frac{3}{4})=x^2+x(\frac{3\times3+4\times4}{12})+1$
$(x+\frac{4}{3})(x+\frac{3}{4})=x^2+x(\frac{9+16}{12})+1$
$(x+\frac{4}{3})(x+\frac{3}{4})=x^2+\frac{25}{12}x+1$
(vii) The given expression is $(3x + 5) (3x + 11)$
$(3x + 5) (3x + 11)=3x(3x+11)+5(3x+11)$ [Using (I)]
$(3x + 5) (3x + 11)=3x(3x)+3x(11)+5(3x)+5(11)$
$(3x + 5) (3x + 11)=9x^2+33x+15x+55$
$(3x + 5) (3x + 11)=9x^2+48x+55$
(viii) The given expression is $(2x^2 - 3) (2x^2 + 5)$
$(2x^2 - 3) (2x^2 + 5)=2x^2(2x^2+5)-3(2x^2+5)$ [Using (I)]
$(2x^2 - 3) (2x^2 + 5)=2x^2(2x^2)+2x^2(5)-3(2x^2)-3(5)$
$(2x^2 - 3) (2x^2 + 5)=4x^4+10x^2-6x^2-15$
$(2x^2 - 3) (2x^2 + 5)=4x^4+4x^2-15$
(ix) The given expression is $(z^2 + 2) (z^2 - 3)$
$(z^2 + 2) (z^2 - 3)=z^2(z^2-3)+2(z^2-3)$ [Using (I)]
$(z^2 + 2) (z^2 - 3)=z^2(z^2)-z^2(3)+2(z^2)-2(3)$
$(z^2 + 2) (z^2 - 3)=z^4-3z^2+2z^2-6$
$(z^2 + 2) (z^2 - 3)=z^4-z^2-6$
(x) The given expression is $(3x - 4y) (2x - 4y)$
$(3x - 4y) (2x - 4y)=3x(2x-4y)-4y(2x-4y)$ [Using (I)]
$(3x - 4y) (2x - 4y)=3x(2x)-3x(4y)-4y(2x)+4y(4y)$
$(3x - 4y) (2x - 4y)=6x^2-12xy-8xy+16y^2$
$(3x - 4y) (2x - 4y)=6x^2-20xy+16y^2$
(xi) The given expression is $(3x^2 - 4xy) (3x^2 - 3xy)$
$(3x^2 - 4xy) (3x^2 - 3xy)=3x^2(3x^2-3xy)-4xy(3x^2-3xy)$ [Using (I)]
$(3x^2 - 4xy) (3x^2 - 3xy)=3x^2(3x^2)-3x^2(3xy)-4xy(3x^2)+4xy(3xy)$
$(3x^2 - 4xy) (3x^2 - 3xy)=9x^4-9x^3y-12x^3y+12x^2y^2$
$(3x^2 - 4xy) (3x^2 - 3xy)=9x^4-21x^3y+12x^2y^2$
(xii) The given expression is $(x+\frac{1}{5})(x + 5)$
$(x+\frac{1}{5})(x + 5)=x (x + 5)+\frac{1}{5}(x + 5)$ [Using (I)]
$(x+\frac{1}{5})(x + 5)=x (x) + x(5)+\frac{1}{5}(x) + \frac{1}{5}(5)$
$(x+\frac{1}{5})(x + 5)=x^2 + x(5+\frac{1}{5}) + 1$
$(x+\frac{1}{5})(x + 5)=x^2 + x(\frac{5\times5+1}{5}) + 1$
$(x+\frac{1}{5})(x + 5)=x^2 + x(\frac{25+1}{5}) + 1$
$(x+\frac{1}{5})(x + 5)=x^2 + \frac{26}{5}x + 1$
(xiii) The given expression is $(z+\frac{3}{4})(z + \frac{4}{3})$
$(z+\frac{3}{4})(z + \frac{4}{3})=z (z + \frac{4}{3})+\frac{3}{4}(z + \frac{4}{3})$ [Using (I)]
$(z+\frac{3}{4})(z+\frac{4}{3})=z(z)+z(\frac{4}{3})+\frac{3}{4}(z)+\frac{3}{4}(\frac{4}{3})$
$(z+\frac{3}{4})(z+\frac{4}{3})=z^2+z(\frac{4}{3}+\frac{3}{4})+1$
$(z+\frac{3}{4})(z+\frac{4}{3})=z^2+z(\frac{4\times4+3\times3}{12})+1$
$(z+\frac{3}{4})(z+\frac{4}{3})=z^2+z(\frac{16+9}{12})+1$
$(z+\frac{3}{4})(z+\frac{4}{3})=z^2+\frac{25}{12}z+1$
(xiv) The given expression is $(x^2 + 4) (x^2 + 9)$
$(x^2 + 4) (x^2 + 9)=x^2(x^2+9)+4(x^2+9)$ [Using (I)]
$(x^2 + 4) (x^2 + 9)=x^2(x^2)+x^2(9)+4(x^2)+4(9)$
$(x^2 + 4) (x^2 + 9)=x^4+9x^2+4x^2+36$
$(x^2 + 4) (x^2 + 9)=x^4+13x^2+36$
(xv) The given expression is $(y^2 + 12) (y^2 + 6)$
$(y^2 + 12) (y^2 + 6)=y^2(y^2+6)+12(y^2+6)$ [Using (I)]
$(y^2 + 12) (y^2 + 6)=y^2(y^2)+y^2(6)+12(y^2)+12(6)$
$(y^2 + 12) (y^2 + 6)=y^4+6y^2+12y^2+72$
$(y^2 + 12) (y^2 + 6)=y^4+18y^2+72$
(xvi) The given expression is $(y^2+\frac{5}{7})(y^2-\frac{14}{5})$
$(y^2+\frac{5}{7})(y^2-\frac{14}{5})=y^2(y^2-\frac{14}{5})+\frac{5}{7}(y^2-\frac{14}{5})$ [Using (I)]
$(y^2+\frac{5}{7})(y^2-\frac{14}{5})=y^2(y^2)-y^2(\frac{14}{5})+\frac{5}{7}(y^2)-\frac{5}{7}(\frac{14}{5})$
$(y^2+\frac{5}{7})(y^2-\frac{14}{5})=y^4+y^2(\frac{-14}{5}+\frac{5}{7})-2$
$(y^2+\frac{5}{7})(y^2-\frac{14}{5})=y^4+y^2(\frac{-14\times7+5\times5}{35})-2$
$(y^2+\frac{5}{7})(y^2-\frac{14}{5})=y^4+y^2(\frac{-98+25}{35})-2$
$(y^2+\frac{5}{7})(y^2-\frac{14}{5})=y^4-\frac{73}{35}y^2-2$
(xvii) The given expression is $(p^2 + 16) (p^2 -\frac{1}{4})$
$(p^2 + 16) (p^2 -\frac{1}{4})=p^2(p^2-\frac{1}{4})+16(p^2-\frac{1}{4})$ [Using (I)]
$(p^2+16)(p^2-\frac{1}{4})=p^2(p^2)-p^2(\frac{1}{4})+16(p^2)-16(\frac{1}{4})$
$(p^2+16)(p^2-\frac{1}{4})=p^4+p^2(16-\frac{1}{4})-4$
$(p^2+16)(p^2-\frac{1}{4})=p^4+p^2(\frac{16\times4-1}{4})-4$
$(p^2+16)(p^2-\frac{1}{4})=p^4+p^2(\frac{64-1}{4})-4$
$(p^2+16)(p^2-\frac{1}{4})=p^4+\frac{63}{4}p^2-4$
- Related Articles
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Verify associativity of addition of rational numbers i.e., $(x + y) + z = x + (y + z)$, when:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- Take away:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)
- Simplify:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- Find the following products:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- Expand each of the following, using suitable identities:(i) \( (x+2 y+4 z)^{2} \)(ii) \( (2 x-y+z)^{2} \)(iii) \( (-2 x+3 y+2 z)^{2} \)(iv) \( (3 a-7 b-c)^{2} \)(v) \( (-2 x+5 y-3 z)^{2} \)(vi) \( \left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \)
- Find the product of the following binomials:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
- Solve: $\frac{4 x-5}{6 x+3}=\frac{2 x-5}{3 x-2}$.
- Find the following products:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- Simplify: \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
