- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the coordinates of the points of trisection of the line segment joining $(4, -1)$ and $(-2, -3)$.
Given:
Given points are $(4, -1)$ and $(-2, -3)$.
To do:
We have to find the points of trisection of the line segment joining the given points.
Solution:
Let the line segment whose end points are $A (4, -1)$ and $B (-2,-3)$ is trisected at points $C(x_1,y_1)$ and $D(x_2,y_2)$.
$C$ divides the line segment in the ratio $1 : 2$
This implies,
$AC : CB = 1 : 2$
Therefore,
Using the division formula
$(x,y)=[\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}]$
$C(x_1,y_1)=\frac{1 \times(-2)+2 \times 4}{1+2}, \frac{1 \times (-3)+2 \times(-1)}{1+2}$
$=(\frac{-2+8}{3}, \frac{-3-2}{3})$
$=(\frac{6}{3}, \frac{-5}{3})$
$=(2, \frac{-5}{3})$
$D$ intersects $AB$ in the ratio $2: 1$
This implies,
$A D: D B=2: 1$
$D(x_2,y_2)=(\frac{(2 \times(-2))+1 \times 4}{2+1}, \frac{2 \times (-3)+1 \times(-1)}{2+1})$
$=(\frac{-4+4}{3}, \frac{-6-1}{3})$
$=(\frac{0}{3}, \frac{-7}{3})$
$=(0, \frac{-7}{3})$
The points of trisection of the given segment are $(2, \frac{-5}{3})$ and $(0, \frac{-7}{3})$.