- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find:
$(i)$. $\frac{7}{24\ }- \frac{17}{36}$
$(ii)$. $\frac{5}{63}-\ (-\frac{6}{21})$
$(iii)$. $-\frac{6}{13}\ -\ (-\frac{7}{15})$
$(iv)$. $-\frac{3}{8}-\frac{7}{11}$
$(v)$. $-2\frac{1}{9}\ -\ 6$
Given:
$(i)$. $\frac{7}{24\ }- \frac{17}{36}$
$(ii)$. $\frac{5}{63}-\ (-\frac{6}{21})$
$(iii)$. $-\frac{6}{13}\ -\ (-\frac{7}{15})$
$(iv)$. $-\frac{3}{8}-\frac{7}{11}$
$(v)$. $-2\frac{1}{9}\ -\ 6$
To do: To solve the given expression.
Solution:
$(i)$. $\frac{7}{24\ }- \frac{17}{36}$$=\frac{7\times 3}{24\times 3}-\frac{17\times 2}{36\times 2}$ [LCM of $24$ and $36$ is $72$ ]
$=\frac{21-34}{72}$
$=-\frac{13}{72}$
$(ii)$. $\frac{5}{63}-\ (-\frac{6}{21})$
$=\frac{5\times 1}{63\times 1}-(-\frac{6\times 3}{21\times 3})$ [LCM of 63 and 21 is 63]
$=\frac{5-\left(-18\right)}{63}$
$=\frac{23}{63}$
$(iii)$. $-\frac{6}{13}\ -\ (-\frac{7}{15})$
$=-\frac{6\times 15}{13\times 15}-(-\frac{7\times 13}{15\times 13})$ [LCM of 13 and 15 is 195]
$=-\frac{90}{195}+\frac{91}{195}$
$=\frac{-90+91}{195}$
$=\frac{1}{195}$
$(iv)$. $-\frac{3}{8}-\frac{7}{11}$
$=-\frac{3\times 11}{8\times 11}-\frac{7\times 8}{11\times 8}$ [LCM of 8 and 11 is 88]
$=-\frac{33}{88}-\frac{56}{88}$
$=\frac{-33-56}{88}$
$=-\frac{89}{88}$
$=-1\frac{1}{88}$
$(v)$. $-2\frac{1}{9}\ -\ 6$
$=\frac{-2\times 9+1}{9}-6$
$=-\frac{18+1}{9}-\frac{6}{1}$
$=-\frac{19}{9}-\frac{6}{1}$
$=-\frac{19\times 1}{9\times 1}-\frac{6\times 9}{1\times 9}$ [LCM of 9 and 1 is 9]
$=-\frac{19}{9}-\frac{54}{9}$
$=\frac{-19-54}{9}$
$=\frac{-73}{9}$
$=-8\frac{1}{9}$