# Find:$(i).\ 2.7 \div 100$$(ii).\ 0.3 \div 100$$(iii).\ 0.78 \div 100$$(iv).\ 432.6 \div 100$$(v).\ 23.6 \div100$$(vi).\ 98.53 \div 100$

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

To do:

We have to find

(i) $2.7 \div 100$

(ii) $0.3 \div 100$

(iii) $0.78 \div 100$

(iv) $432.6 \div 100$

(v) $23.6 \div100$

(vi) $98.53 \div 100$

Solution:

We know that,

On dividing a decimal by $10^n$, the decimal point shifts to the left by $n$ places.

$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$

Therefore,

(i) $2.7\div100= \frac{27}{10}\times\frac{1}{100}$

$= \frac{27}{1000}$

$= 0.027$

(ii) $0.3\div100= \frac{3}{10}\times\frac{1}{100}$

$= \frac{3}{1000}$

$= 0.003$

(iii) $0.78\div100= \frac{78}{100}\times\frac{1}{100}$

$= \frac{78}{10000}$

$= 0.0078$

(iv) $432.6\div100= \frac{4326}{10}\times\frac{1}{100}$

$= \frac{4326}{1000}$

$= 4.326$

(v) $23.6\div100= \frac{236}{10}\times\frac{1}{100}$

$= \frac{236}{1000}$

$= 0.236$

(vi) $98.53\div100$

$= \frac{9853}{100}\times\frac{1}{100}$

$= \frac{9853}{10000}$

$= 0.9853$

Updated on 10-Oct-2022 13:32:37