- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Examine whether you can construct $∆DEF$ such that $EF = 7.2\ cm$, $m\angle E = 110^{\circ}$ and $m\angle F = 80^{\circ}$. Justify your answer.
Given: $EF = 7.2\ cm$, $m\angle E = 110^{\circ}$ and $m\angle F = 80^{\circ}$.
To do: To examine whether $∆DEF$ can be constructed.
Solution:
We know the angle sum property of a triangle which states that the sum of all angles in a triangle is always $180^{\circ}$.
So, $\angle E + \angle F + \angle D = 180^{\circ}$
$\Rightarrow 110^{\circ} + 80^{\circ} + \angle D = 180^{\circ}$
$\Rightarrow \angle D = -10^{\circ}$
Here we obtain a negative value for $\angle D$. So $\triangle DEF$ can't be constructed.
- Related Articles
- Construct $∆ABC$, given $m\angle A = 60^{\circ}$, $m\angle B = 30^{\circ}$ and $AB = 5.8\ cm$.
- Construct $∆DEF$ such that $DE = 5\ cm$, $DF = 3\ cm$ and $\angle EDF = 90^{\circ}$.
- Construct $∆PQR$ if $PQ = 5\ cm$, $m\angle\ PQR = 105^{\circ}$ and $m\angle QRP = 40^{\circ}$. [Hint: Recall angle-sum property of a triangle.]
- In $∆ABC$, $\angle A=30^{\circ},\ \angle B=40^{\circ}$ and $\angle C=110^{\circ}$In $∆PQR$, $\angle P=30^{\circ},\ \angle Q=40^{\circ}$ and $\angle R=110^{\circ}$. A student says that $∆ABC ≅ ∆PQR$ by $AAA$ congruence criterion. Is he justified? Why or why not?
- Construct the right angled $∆PQR$, where $m\angle Q = 90^{\circ},\ QR = 8cm$ and $PR = 10\ cm$.
- If $∆DEF ≅ ∆BCA$, write the part(s) of $∆BCA$ that correspond to$(i).\ \angle E$$(ii).\ \overline{EF}$$(iii).\ \angle F$$(iv).\ \overline{DF}$
- Construct $∆ABC$ with $BC = 7.5\ cm$, $AC = 5\ cm$ and $\angle C = 60^{\circ}$.
- Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
- Construct an isosceles right-angled triangle $ABC$, where $m\angle ACB = 90^{\circ}$ and $AC = 6\ cm$.
- In the given figure, $RT||SQ$. If $\angle QPS=110^{\circ}$, $\angle PQS=40^{\circ}$, $\angle PSR=75^{\circ}$ and $\angle QRS=65^{\circ}$, then find the value of $\angle QRT$"\n
- Construct $∆ABC$ such that $AB=2.5\ cm$, $BC=6\ cm$ and $AC=6.5\ cm$. Measure $\angle B$.
- $PQRS$ is a trapezium in which $PQ||SR$ and $\angle P=130^{\circ}, \angle Q=110^{\circ}$. Then find $\angle R$ and $\angle S$.
- In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
- Write 'True' or 'False' and justify your answer in each of the following:The value of the expression \( \left(\sin 80^{\circ}-\cos 80^{\circ}\right) \) is negative.

Advertisements