- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Evaluate the following:
(i) $102 \times 106$
(ii) $109 \times 107$
(iii) $35 \times 37$
(iv) $53 \times 55$
(v) $103 \times 96$
(vi) $34 \times 36$
(vii) $994 \times 1006$
Given:
(i) $102 \times 106$
(ii) $109 \times 107$
(iii) $35 \times 37$
(iv) $53 \times 55$
(v) $103 \times 96$
(vi) $34 \times 36$
(vii) $994 \times 1006$
To do:
We have to find the given products.
Solution:
Here, to find the given products we can use distributive property twice.
Distributive Property:
The distributive property of multiplication states that when a factor is multiplied by the sum or difference of two terms, it is essential to multiply each of the two numbers by the factor, and finally perform the addition or subtraction operation.
$(a+b)(c+d)=a(c+d)+b(c+d)$..............(I)
(i) The given expression is $102 \times 106$
We can write $102$ as $102=100+2$ and $106$ as $106=100+6$
Therefore,
$102 \times 106=(100+2)\times(100+6)$
$102 \times 106=100(100+6)+2(100+6)$
$102 \times 106=100(100)+100(6)+2(100)+2(6)$
$102 \times 106=10000+600+200+12$
$102 \times 106=10812$
(ii) The given expression is $109 \times 107$
We can write $109$ as $109=100+9$ and $107$ as $107=100+7$
Therefore,
$109 \times 107=(100+9)\times(100+7)$
$109 \times 107=100(100+7)+9(100+7)$
$109 \times 107=100(100)+100(7)+9(100)+9(7)$
$109 \times 107=10000+700+900+63$
$109 \times 107=11663$
(iii) The given expression is $35 \times 37$
We can write $35$ as $35=30+5$ and $37$ as $37=30+7$
Therefore,
$35 \times 37=(30+5)\times(30+7)$
$35 \times 37=30(30+7)+5(30+7)$
$35 \times 37=30(30)+30(7)+5(30)+5(7)$
$35 \times 37=900+210+150+35$
$35 \times 37=1295$
(iv) The given expression is $53 \times 55$
We can write $53$ as $53=50+3$ and $55$ as $55=50+5$
Therefore,
$53 \times 55=(50+3)\times(50+5)$
$53 \times 55=50(50+5)+3(50+5)$
$53 \times 55=50(50)+50(5)+3(50)+3(5)$
$53 \times 55=2500+250+150+15$
$53 \times 55=2915$
(v) The given expression is $103 \times 96$
We can write $103$ as $103=100+3$ and $96$ as $96=100-4$
Therefore,
$103 \times 96=(100+3)\times(100-4)$
$103 \times 96=100(100-4)+3(100-4)$
$103 \times 96=100(100)-100(4)+3(100)-3(4)$
$103 \times 96=10000-400+300-12$
$103 \times 96=9888$
(vi) The given expression is $34 \times 36$
We can write $34$ as $34=30+4$ and $36$ as $36=30+6$
Therefore,
$34 \times 36=(30+4)\times(30+6)$
$34 \times 36=30(30+6)+4(30+6)$
$34 \times 36=30(30)+30(6)+4(30)+4(6)$
$34 \times 36=900+180+120+24$
$34 \times 36=1224$
(vii) The given expression is $994 \times 1006$
We can write $994$ as $994=1000-6$ and $1006$ as $1006=1000+6$
Therefore,
$994 \times 1006=(1000-6)\times(1000+6)$
$994 \times 1006=1000(1000+6)-6(1000+6)$
$994 \times 1006=1000(1000)+1000(6)-6(1000)-6(6)$
$994 \times 1006=1000000+6000-6000-36$
$994 \times 1006=999964$
- Related Articles
- Evaluate the following products without multiplying directly:(i) \( 103 \times 107 \)(ii) \( 95 \times 96 \)(iii) \( 104 \times 96 \)
- Find:$(i).\ 0.2 \times 6$$(ii).\ 8 \times 4.6$$(iii).\ 2.71 \times 5$ $(iv).\ 20.1 \times 4$$(v).\ 0.05 \times 7$$(vi). 211.02 \times 4$$(vii).\ 2 \times 0.86$
- Simplify the following using the identities:(i) $\frac{((58)^2 – (42)^2)}{16}$(ii) $178 \times 178 – 22 \times 22$(iii) $\frac{(198 \times 198 – 102 \times 102)}{96}$(iv) $1.73 \times 1.73 – 0.27 \times 0.27$(v) $\frac{(8.63 \times 8.63 – 1.37 \times 1.37)}{0.726}$
- Find:$(i).\ 2.5 \times 0.3$$(ii).\ 0.1 \times 51.7$$(iii).\ 0.2 \times 316.8$ $(iv).\ 1.3 \times 3.1$$(v).\ 0.5 \times 0.05$$(vi).\ 11.2 \times 0.15$ $(vii).\ 1.07 \times 0.02$$(viii).\ 10.05 \times 1.05$$(ix).\ 101.01 \times 0.01$ $(x).\ 100.01 \times 1.1$
- Find:$(i).\ 1.3 \times 10$$(ii).\ 36.8 \times 10$$(iii).\ 153.7 \times 10$$(iv).\ 168.07 \times 10$$(v).\ 31.1 \times 100$$(vi).\ 156.1 \times 100$$(vii).\ 3.62 \times 100$$(viii).\ 43.07 \times 100$$(ix).\ 0.5 \times 10$ $(x).\ 0.08 \times 10$$(xi).\ 0.9 \times 100$$(xii).\ 0.03 \times 1000$
- Simplify:\( \frac{155 \times 155 \times 155-55 \times 55 \times 55}{155 \times 155+155 \times 55+55 \times 55} \)
- Express the following in exponential form:$(i)$. $6\times6\times6\times6$$(ii)$. $t\times t$$(iii)$. $b\times b\times b\times b$$(iv)$. $5\times5\times7\times7\times7$$(v)$. $2\times2\times a\times a$$(vi)$. $a\times a\times a\times c\times c\times c\times c\times d$
- Write the following numbers in the usual form :(i) $4.83 \times 10^7$(ii) $3.02 \times 10^{-6}$(iii) $4.5 \times 10^4$(iv) $3 \times 10^{-8}$(v) $1.0001 \times 10^9$(vi) $5.8 \times 10^2$(vii) $3.61492 \times 10^6$(viii) $3.25 \times 10^{-7}$
- Evaluate : $-35 \times 34$
- Evaluate:(i) \( \sqrt[3]{36} \times \sqrt[3]{384} \)(ii) \( \sqrt[3]{96} \times \sqrt[3]{144} \)(iii) \( \sqrt[3]{100} \times \sqrt[3]{270} \)(iv) \( \sqrt[3]{121} \times \sqrt[3]{297} \)
- Find the products of the following:(i). $(-4) \times (-5) \times (-8) \times (-10)$(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$
- Solve the following$8 \times 53 \times (-125)$
- Find the product using suitable properties.(a) \( 738 \times 103 \)(b) $854 \times 102$(c) $258 \times 1008$(d) $1005 \times 168$
- Explain the following properties:i) ($-$a1) $\times$ ($-$a2) $\times$ ($-$a3) $\times$ ... $\times$ ($-$an) = $-$ (a1 $\times$ a2 $\times$ a3 $\times$ ... $\times$ an), when n is odd.ii) ($-$a1) $\times$ ($-$a2) $\times$ ($-$a3) $\times$ ... $\times$ ($-$an) = (a1 $\times$ a2 $\times$ a3 $\times$ ... $\times$ an), when n is even.iii) ($-$a) $\times$ ($-$a) $\times$ ($-$a) $\times$ ... n times = $-$ an, when n is odd. iv) (-$a) $\times$ ($-$a) $\times$ ($-$a) $\times$ ... n times = an, when n is even. v) ($-$1) $\times$ ($-$1) $\times$ ($-$1) $\times$ ... n times = $-$ 1, when n is odd.v) ($-$1) $\times$ ($-$1) $\times$ ($-$1) $\times$ ... n times = 1, when n is even.
- Simplify the following:$14 \times 4\frac{5}{8} \times \frac{27}{35} \times 1\frac{3}{37}$
