EUPHORIA

programming language

tutor-lalspolnt

M PLYEASYLEARN

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia | 3 https://twitter.com/tutorialspoint

Euphoria

About Tutorial

This tutorial gives you basic understanding of Euphoria programming language.
Euphoria is simple, flexible, easy to learn, and interpreted high-level programming
language for DOS, Windows, Linux, FreeBSD, and more. This tutorial describes
everything a programmer needs to know such as its environment, data types, syntax
and operators, file handling, and controlling the flow of program.

Audience

This tutorial is designed for the aspiring students who are keen to learn and
understand Euphoria in detail. This tutorial would be of great help for the IT
professionals working as programmers. The enthusiastic readers can access this
tutorial as a source of additional reading.

Prerequisites

Before proceeding with this tutorial, you need to have a basic knowledge of working
on Windows or Linux. You need to be familiar with any programming language such
as C, C++. You need to have sound understanding of operating system, memory
allocation and de-allocation, and basics of efficient programming and debugging.

Disclaimer & Copyright

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials
Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,
distribute or republish any contents or a part of contents of this e-book in any manner
without written consent of the publisher. We strive to update the contents of our
website and tutorials as timely and as precisely as possible, however, the contents
may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee
regarding the accuracy, timeliness or completeness of our website or its contents
including this tutorial. If you discover any errors on our website or in this tutorial,
please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Euphoria

Table of Contents

Y <o 11 Vo T i
0T 1= o T o= i
o =T =T U1 1 i
Disclaimer & COPYIIZht.......uueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesereseenessessassnnssssssnnnnnnnnnnnnns i
Table Of CONTENTSueeeiiiiiiiiiittiiitei it s e s as e s s as e s s s as e s sessan e s s snnesessannesanns i
1. EUPHORIA OVERVIEW.......otiitiiiiiieiiittieee ettt et e e e e e sitrer e e e e s e sestneneeeaesesesnnnsneneaesesesenanns 1
[T o] o T = =T 1] o =T3S 1
Platform ReQUIrEMENTSceeeneeneessessasaesasnsssssssssssssssssssssssssssssnsssssnnnnnnnnnnnnnnnnnnnn 2
EUPhOria LIMItatioNS ..ccceeeeeeeeeeeeeeeeeeeemmemmemmmmsmmmsssns 2
EUPNOria LICENSING .ccuvueeereeeeeeeeenmeeemeeeeemmmmmsmssnnsnns 2
2. EUPHORIA ENVIRONMENTuttitttitiiiiiiiitee s seinereee e e s e seseeaenere s e s s seseaseserenesesesennsnenenenensnes 4
LinUX, Free BSD INSTallationcicieeeiiiieeierineierieeierieeeiereeeeieresssieressseresssseresssserensssssenssssssnssssssnsssssansssssannnns 4
=T oI R T a1 = T Tl 11U URPRRNt 4
Step 2: SettiNg UP the Path . e e e e s e e e e e e s e setae e e e e e s esnstaaseeeseesnnnees 5
SEEP 31 CONFIMMATION ..eeiiiiiei ettt e et e e e et e e e e ata e e eebaeeeeabeeaeastaeeeansaseesssaseeantseeeanssaeesnnsens 5
WIN32, DOS INSEAllation ...ceeeueieeeeiiieeerreeeierrenneerensserreessesrenssessenssessenssessenssessenssesssnssssssnssesssnssesennssessnnssssenne 6
=T oI R T a1 = g Tl 11U URPPRNt 6
A= R 20T oTo o T gYd o o T Y =T o 11 =SSR 6
Ry A=Y o TR 00 o1 [31 = U o o X1 RS 6
EUPNOria INTEIPrEterscuueeeeeeeeeeeeeeeeeeeemeeeeemeeeeesssesssesssnnnns 7
T 27N (O 1V 7V O PP 8
First EUPhOria PrOSram........ . ciiiiieiiceccciiiieeicescsessssennesssesssesesnnssssssssesesnnnssssssssessnnnsssssssesennnnssssssssesnnnnnsnnnns 8
0T Y o Lo T = T Lo 1Y] 4 =T o Tt 8
LT =T V=T IR T o N 9
XS SIONS . .. iiieeeieeeciiriiierieneeeesreeeenassssesereerenmssssssssseseennsssssssssesennsssssssssesesnnssssssssenssnnnssssssssessnnnsssssssnesennnnns 10
BIOCKS Of COUR c.uuueriiiiitiiiiiittiiiitttiiiiete et sssre s sae e e as e sesssn e s s ssn e sessan e e sesssnessessnnessssssnesessannesnss 10

Euphoria

MUILI-LINE STatemMENTES ...cciiiieiiiiiiiiiiitttiie e esas e s as e s s sass e sssane e sessnnessanns 11
[T or=] o T30y = 1 = Lot LT N 11
CommMENtS iN EUPNOKIAueiccccccccccccrcsrssssssssssssssss s s s s s s s s s s ssssssssssssssssssssssssssssssssnsnnnnsnnen 11
[T Lo o] 1= SRR PRRRTPPP 12
EUPHORIA VARIABLES ettt e e e st re e e s e s sase e e e e e e e s e s snnnenes 13
Variable Declaration..........ciieeeeiiiiiiiiiiriniinneere s aasa e 13
ASSIZNING VAlUES .eeeeieireiiiiiiiiitetiiinsietret s sss e s ass e s s s s ans s e e s s s s s sans e e e s ssssssssnnnnens 13
[0 LT3N =T Y o7 oY N 15
EUPHORIA CONSTANTS ..ttt ettt e e e s et e e e e s e s e et e e s e e e sssaansneneeeeesesanannnenenes 17
[T T o] o] 1= USRS 17
L4 == T X 18
EXAIMIPIES ottt ettt h e st h e h et e bt e h et e b et e bt e e b et e sa et e bt e e eh e e e bt e e e hteeeabeesabeenateesareennteas 18
EUPHORIA DATATYPES ...ttt ettt e e s s s e st e e e e s e s e s aseaene s e e e s e s nsnsnnnenes 21
0 == =T 21
2 e 21
SEOUENCES .euuiiireniiirruniiirreeiiirreeieimsssisimsssstmsssstsssssstsssssstsssssstsssssssssssssssssssstssssssssssssssssssssssssssssssssssssnssssssnnsss 22
(0] < =T 1 £SO P PUUPUSOTR: 23
EUPHORIA OPERATORSceeeeieittiee ettt e e s e seirrrer e e e s e s e sissneresesesessssansnenesesenssanannnenenes 24
The Arithmetic OPerators. ... iiiiiiiieeicciirrrrerreesseerrerernnsssseesrsennnssssssssssesnnssssssssssssnnnssssssssessnnnsssssssnanns 24
The Relational OPerators... ... cciiiiiieeieiiiiiiiieeieeseeerreeennnssssessesennnssssssssssesnnssssssssssssnnsssssssssessnnnsssssssnanns 25
LI L =T or= 0 « =T - o 3N 25
The AsSIZNMENT OPEIatorsS ..cccieeiiiiiiiiiiiiiiiiiiiereereeeeeeeeees e e s se s s s s esssssssssssesssssssssssssssssssssssssssssssnssssessssssssenssssnns 26
MiSCEIlAaNEOUS OPEIratOrS.....ccuueeeeeeeueememeeemeemmmmssesssnssssssnnnnnnns 27
QLI T <T@ T 1T = o OSSR 27
Precedence of EUPhOria OPerators.........cciiieeeeeecieiiiiieeienicsesrieeenensssesssesennnsssssssssssennnssssssssesesnnssssssssessnnnnns 28

Euphoria

EUPHORIA BRANGCHING......cuttititititititititititisisisesistsesestsesesesesesesesesestss..........—.......—.....—.——————. 30
THE f STAtEMENT ... e e e s e e s s e e e s e e s e s e s e e s s e s s e s s e s e s e e sessessesesssnsnannnnnnns 30
L= D S PP P PP PPPPPPPPPPPPPPPPPPRE 30
[T T 0o o [P PRRRTPPP 31
LI 7 =7 KT =3 = 1 =T 44 =T o 31
)LL) PP P PRSP ROPPTOP 31
[T T o] o [U PPRRRTPPPI 32
The if...elsif...else STateMENtccceviiiiiiiiiiiiiccc e e s e e e s e s s s e s s e s s e s e s e s s e s s e seeenns 32
L= S PP P PP PPPPPPPPPPPPPPPPPPRE 32
[T Lo o [USSP 33
The if...label...then STateMENtccceeiiiiiiiiiccccce e s e s s e s s s s s s s s e s s sesseseseesnesensnnnnanns 34
L= D PP PPPPPPPPPPPPPRE 34
T 11 0] o1 [T TP TP PSP P TP T P PUOPPPTPPOT 34
AT T 7 =T CT=3 - 1 =T 0 1= o | N 35
R - PP OO PP OPPPPPPT 35
T 11 0] o1 [T P T TSP PRSP P PP RPSTOPPP PR 35
The SWItCh STateMENtccciiiiiiiireeriiiiiiiiiisneretisiissssssnssesssssssssssssesssssssssssnssessssssssssnnsssssssssssssnnsasssssssssssnnnsnns 36
L= PP PPPPPPPPPPPPPPPRE 36
[T T 0] o [T PRSP 37
The switch...wWith fallthru StatemMeENntcccceeeiiiiiiiiiiecceerr e e e s e s e s e s e s e ssesssssssssssannenanns 37
L= D PP PP PPPPPPPPPPPRE 38
T [0] o1 [T T P PP P TP T PR UPOPPPTPPRT 38
The switch....label Stat@MENTccciiiiiiiiiieriiiiiiiierrr s sass e s s s s ssans s s s s ssssssssnnnnnns 40
R - P OO ST OPPPPPPPO 40
[T Lo o 1 SRR 41
The ifdef StatemMENT ... i e e e e e e e s e e s e e s e s e s s s s s s s s s s s sssssssssssssssssssssssssssnsnssnnnnnnnnnnns 42
L= D SRR PPPPPPPPPPRE 42
[0 Y101] [T UURR 43
The ifdef...elsedef STatE@MENT.........ccceeeieiiiiiicccceeeeeeee e e e e s s e s e s s s s e s s s ssssssssssseeseesssenananannanns 44
L= D PP PP PPPPPPPPPPRE 44
20T Lo o RSP 44
The ifdef...elsifdef STateMENTccoeiiiiiiiiiiiiiiii s s s s s e s s s s s s s s s e s s s s s s eeeeees 44
L=) S PP P PP PPPPPPPPPPPPPPPPPIRE 44
20T Lo o RSP 45
EUPHORIA LOOPS ...ceetitititititititititittsesisisesesesesesasesesesssssssssessssssss st ssssssssasssssasssssssssssssssssssssnsnen 46
While Statement ... s s s s s s s s s s e e e e 47

10.

11.

12.

Euphoria

L= PP P PP PPPPPPPPPRPPPPPPPIRE 47
[T Lo o [USRS 47
The while....With entry StatemMENt.......cccceeiiiiiiiiiiiiiii e e e e e s e s s s s e e s e s s e sssssssssessssnnanns 48
)LL) PO PP P PP TP OTPTOP 48
[T T 0o o [P RRRTPPP 48
The while....label STatemMENtccovviiiiiiiiiiiiiiii ssnsanns 49
)LL) PP PP P PP TP ROPPTOP 49
[T Lo o [USRS 49
L= D S PP P PP PPPPPPPPPPPPPPPPPIRE 51
[T Lo o [USSP 51
The 100p....With entry STatEMENTccceeiiiiiiiiiiiiici e e s s e e s e s e s s s s s s s s e ssssssesessssannnnns 52
L= PP PPPPPPPPPPPPPPPRE 52
T [0] o1 [T PP T PRSP PPRUUOPPPTOPPOT 53
The loop....Jabel Statementcccvviiiiiiiiiiiiiiiii s e s s e s s e s s e e e 53
R - P PO OPPPPPPTN 54
T 11 0] 1 [T T TSP P TP T PP USTOPPPTOPPOT 54
L= D PSP PPPPPPPPPPPPPPPRE 56
[T T 0] o [PPSR 56
EUPHORIA FLOW CONTROL ...tttitiiiiiviiitiiiriiiiiiesiiiersrererereteeesesesessmee ..., 58
The eXit StAtEMENTueeeiiiiiiiiiiierttiiiiiiseeeeetssessssssssessssssssssnssesssssssssssnssessssssssssnnssensssssssssnnsssssssssssssnnnnnns 58
L= D PP PP PPPPPPPPPPPRE 58
T [0] o1 [T T P PP P TP T PR UPOPPPTPPRT 58
LI =23 LT3 0 =T 4 59
R - P OO ST OPPPPPPPO 59
T [0] 1 [T T P TP PTP TP PR PSOPPPTOPPRT 60
The continue STatemMENtcciviiiiiiiiiiiiii e 61
L= D ST PPPPPPPPPPPRE 61
[0 Y101] [T UURR 61
The retry STatemMENt oo sse e s s e sernn s s e s s s e e ennnssssssssssennnssssssssesesnnnsssssssnessnnnssssssssnnns 62
L= D PP PP PPPPPPPPPPRE 62
20T Lo o RSP 62
LI L2 Lo Lo B3 = 1= 4 =T 41 NS 63
L=) S PP P PP PPPPPPPPPPPPPPPPPIRE 63
20T Lo o RSP 64
SHORT CIRCUIT EVALUATION ...ttt ee e e e e e an e e aa e e e 65
EUPHORIA SEQUENCESootititiiiiiiiiititiiitititisisisesesesesesesesesesessseseatsssrarata.aa...........—.————. 67

13.

14.

15.

16.

Euphoria

[T Lo o 1RSSR 67
(0 T Yot €1 g 4T V-3 68
SEIING ATTAYS ceeeeeeiiiiiiiiiernnniiiiitiieensssisesiisessssssssssssssssssssssssssssssnsssssssssssssnssssssssssssssnnssssssssssssnnnssssssssssnnnnnsssss 69
EUPNOia SErUCTUIES ...ccvvviiriieieieeeeeeeteieieiennneesssnns 69
L0 T 14T T V0 ¢ T=T o | T o 70
Arithmetic OPerations......cccvviiiiiiiiiiiiiiii s s s s s s s s s s s s s s s ssssssssssssssssssssssssnnnns 71
ComMMANd LiN@ OPLIONSuuuiiiiiiiiiiiiiiiiiisisss 72
EUPHORIA DATE AND TIME... .ttt ettt e e st e e e e s e s sinenene e e e e s e samsnenenes 74
The date() METROM ... e e e s s e s e s s e s s e s s s s s s s s s e s e s s sessessesssssnssssnnnanns 74
The time() MEEROM ... e e e e s e s s s e s s s s s s e s s e s s e s s s e sesssessessesesssnsnsnnnnanns 76
Date & Time Related Methodscceeiiiiiiiiiiiiiiiiiiicten s 77
EUPHORIA PROCEDURES. ...ttt e ettt e e e e s e sttt ee e e s e s sansneneeeeesessansnnnenes 78
Procedure Definitioncccueeiiiiiiiiiiiiiiiiiiiniiiiiiieieiene e ar e s as e e sesaane e s sas 78
T 11 0] o1 [T TP TP PSP P TP U PPRPSTOPUPTPPOT 78
CalliNg @ PrOCEAUIE.......uiiiiriiiiiiiiisiissssisses 79
Procedure Parameters.......eeiiiiueeiiiinniiiiinniiiiseeiiisieiiseteiisseeiomsseeiesstesissteiesssteiesssesssssssesesssssesesns 79
[0 Y101] [T UURR 79
EUPHORIA FUNCTIONS ...ttt ettt e e s e seinrrcn e e s e s e sssnenesese s e s sansnenesesesssanansnenenes 81
FUNCEION DEfiNitioN......cueiiiiiiiiiitiiiete ittt s e s as s s an e s s e 81
[0 Y101] [T UURR 81
CalliNg @ FUNCLIONuuuiiiiiiniiisiissississs 81
FUNCLION Parametersccouiiiiiiiiiiiiiiiiitiiiiiiiieiieieiiiinssiieeesiiemsssieeesiiemsssssteessisssssssseessessssssssssessssses 82
[T Lo o RSP 82
The return STateMENt........eciiieiiiiiiieiiitere e e s s e e as e e sesssn e ssesssnesessanessessaneses 83
EUPHORIA FILE 170ttt sttt s e ste e sv s sv e e sraenae e s s e esnesnaesnneneesnansneesnennnes 84
Displaying 0N the SCrEEN i ccrrtrretecceer s reeeee e e e s e e s e nna s ee s s s e s ennasssssssssesennnssssssseeeennnsssssssnesennnnns 84

Vi

Euphoria

0peNiNg and ClOSING FIlESccceiiiiiiiiiiiiiiiiiiiiisssissnns 84
The 0pen METRO........o i s e s e s s s e s e s s s s s s e s s e s s e s e sesseesesessnnnnns 85
L= D S PP P PRSP PPPPPPPPPPPPPPPPIRE 85
[T Lo o [P PRRRTPRP 86
The CloSe() MELROMccceeiieeeeeeieecccceereee e snrre s e s s s s s s ssnnr e e s s s s s s s ssnnnsessssssssssnnnsenessssssssnnnnanssssssssnnnnans 86
)LL) TP PP PSP OPPTOP 87
[T Lo o [P RRRTPPP 87
Reading and WIiting Fileseeesessesssnsssnssnnnnnnns 88
The printf() MEtROd ... e e s s e e s s s s s s s s s e s e s s s s s s s e seesesesenannns 88
L= S PP P PP PPPPPPPPPPPPPPPPPPIRE 88
[T T o] o[RS 88
The gets() MEthod ... e e e s e e s s s s s s s s s e e s s s s s e s s s s sesssessesssssssnssnsssnnanns 89
R - PP OO OPPPPPPTON 89
T 11 0] o1 [T T PP T PRSP P RPSOPPPTOPROT 90
File & Directory Related Methods............eeeeeeeeeeeemneemmmeemmmmmmmmsmmsmss 91

Vii

1. EUPHORIA OVERVIEW

Euphoria stands for End-User Programming with Hierarchical Objects for Robust
Interpreted Applications. Euphoria's first incarnation was created by Robert Craig on
an Atari Mega-ST and it was first released in 1993. It is now maintained by Rapid
Deployment Software.

It is a free, simple, flexible, easy to learn, and interpreted but extremely fast 32-bit
high-level programming language for DOS, Windows, Linux, FreeBSD and more.

Euphoria is being used to develop Windows GUI programs, high-speed DOS games,
and Linux/FreeBSD X Windows programs. Euphoria can also be used for CGI (Web-
based) programming.

Euphoria Features

Here is the list of major features of Euphoria:

e It is a simple, flexible, powerful language definition that is easy to learn and
use.

e It supports dynamic storage allocation which means variables grow or shrink
without the programmer having to worry about allocating and freeing the
memory. It takes care of garbage collection automatically.

e It is extremely faster than conventional interpreters such as Perl and Python.

e Euphoria programs run under Linux, FreeBSD, 32-bit Windows, and any DOS
environment.

e Euphoria programs are not subject to any 640K memory limitations.

e It provides an optimizing Euphoria-To-C translator which you can use to
translate your Euphoria program into C and then compile it with a C compiler
to get an executable (.exe) file. This can boost your program speed by 2 to 5
times.

e Underlying hardware are completely hidden which means programs are not
aware of word-lengths, underlying bit-level representation of values, byte-
order etc.

e Euphoria installation comes along with a full-screen source debugger, an
execution profiler, and a full-screen multi-file editor.

) tutorialspoint 1

SIMPLYEASYLEARNINIEG

Euphoria

e It supports run-time error-handling, subscript, and type checking.

e It is an open source language and comes completely free of cost.

Platform Requirements

Euphoria is available on Windows, Linux, FreeBSD, and OSX. Here is the bare
minimum version required with the following platforms —

e WIN32 version: You need Windows 95 or any later version of Windows. It
runs fine on XP and Vista.

e Linux version: You need any reasonably up-to-date Linux distribution, that
has libc6 or later. For example, Red Hat 5.2 or later works fine.

e FreeBSD version: You need any reasonably up-to-date FreeBSD distribution.

¢ Mac OS X version: You need any reasonably up-to-date Intel based Mac.

Euphoria Limitations

Here are some prominent limitations of Euphoria:

e Even though Euphoria is simple, fast, and flexible enough for the
programmers; it does not provide call support for many important
functionalities. For example, network programming.

e Euphoria was invented in 1993, and still you would not find any book written
on this language. There is also not much documentation available for the
language.

But these days, the language is getting popular very fast and you can hope to have
nice utilities and books available for the language very soon.

Euphoria Licensing

This product is free and open source, and has benefited from the contributions of
many people. You have complete royalty-free rights to distribute any Euphoria
programs that you develop.

Icon files, such as euphoria.ico and binaries available in euphoria\bin, may be
distributed with or without your changes.

You can shroud or bind your program and distribute the resulting files royalty-free.
Some additional 3™ party legal restrictions might apply when you use the Euphoria-
To-C translator.

D tutorials ’

SYLEARMINILEG

Euphoria

The generous Open Source License allows Euphoria to use for both personal and

commercial purposes. Unlike many other open source licenses, your changes do not
have to be made open source.

|\ tutorials 3

SIMPLYEASYLEARNINIG

http://www.rapideuphoria.com/License.txt

2. EUPHORIA ENVIRONMENT

This chapter describes about the installation of Euphoria on various platforms. You
can follow the steps to install Euphoria on Linux, FreeBSD, and 32-bit Windows. So
you can choose the steps based on your working environment.

Linux, Free BSD Installation

Official website provides .tar.gz file to install Euphoria on your Linux or BSD OS. You
can download your latest version of Euphoria from its official website Download
Euphoria.

Once you have .tar.gz file, here are three simple steps to be performed to install
Euphoria on your Linux or Free BSD machine:

Step 1: Installing Files

Untar the downloaded file euphoria-4.0b2.tar.gz in a directory where you want to
install Euphoria. If you want to install it in /home directory as follows, then:

$cp euphoria-4.0b2.tar.gz /home
$cd /home
$gunzip euphoria-4.@b2.tar.gz

$tar -xvf euphoria-4.0b2.tar

This creates a directory hierarchy inside /home/euphoria-4.0b2 directory as
follows:

$1s -1

-rw-r--r-- 1 1001 1001 2485 Aug 17 06:15 Jamfile
-rw-r--r-- 1 1001 1001 5172 Aug 20 12:37 Jamrules
-rw-r--r-- 1 1001 1001 1185 Aug 13 06:21 License.txt
drwxr-xr-x 2 1001 1001 4096 Aug 31 10:07 bin
drwxr-xr-x 7 1001 1001 4096 Aug 31 10:07 demo

-rw-r--r-- 1 1001 1001 366 Mar 18 09:02 file_id.diz

) tutorialspoint 4

SIMPLYEASYLEARNINIEG

http://www.rapideuphoria.com/
http://www.rapideuphoria.com/

Euphoria

drwxr-xr-x 4 1001 1001 4096 Aug 31 10:07 include
-rw-r--r-- 1 1001 1001 1161 Mar 18 09:02 installu.doc
drwxr-xr-x 4 1001 1001 4096 Aug 31 10:07 source
drwxr-xr-x 19 1001 1001 4096 Sep 7 12:09 tests

drwxr-xr-x 2 1001 1001 4096 Aug 31 10:07 tutorial

Note: File name euphoria-4.0b2.tar.gz depends on latest version available. We are
using 4.0b2 version of the language for this tutorial.

Step 2: Setting Up the Path

After installing Euphoria, you need to set proper paths so that your shell can find
required Euphoria binaries and utilities. Before proceeding, there are following three
important environment variables you need to set up:

1. Set PATH environment variable to point /home/euphoria-4.0b2/bin directory.
2. Set EUDIR environment variable to point to /home/euphoria-4.0b2.
3. Set EUINC environment variable to point to /home/euphoria-4.0b2/include.

These variables can be set as follows —

$export PATH=$PATH:/home/euphoria-4.0b2/bin
$export EUDIR=/home/euphoria-4.0b2

$export EUINC=/home/euphoria-4.0b2/include

Note: The above commands used to set environment variables may differ depending
on your Shell. We used bash shell for executing these commands to set the variables.

Step 3: Confirming Installation
Confirm if you installed Euphoria successfully or not.

Execute the following command:

$eui -version

If you get following result, then it means you have installed Euphoria successfully;
otherwise you have to go back and check all the steps again.

$eui -version

Euphoria Interpreter 4.0.0 beta 2 (r2670) for Linux

D tutorials ®

SYLEARMINILEG

Euphoria

Using System Memory

$

That is it, Euphoria Programming Environment is ready on your UNIX machine, and
you can start writing complex programs in easy steps.

WIN32 and DOS Installation

Official website provides .exe file to install Euphoria on your WIN32 or DOS OS. You
can download your latest version of Euphoria from its official website Download
Euphoria.

Once you have .exe file, here are three simple steps to follow for installing Euphoria
Programming language on your WIN32 or DOS machine:

Step 1: Installing Files

Double click on the downloaded .exe setup program to install all the files. We
downloaded euphoria-40b2.exe file for installation.

The filename euphoria-40b2.exe depends on latest version available. We use version
4 beta 2 of the language.

By default Euphoria would be installed in C:\euphoria-40b2 directory but you can also
select a desired location.

Step 2: Rebooting the Machine
Re-boot your machine to complete the installation.

Step 3: Confirming Installation
Confirm if you installed Euphoria successfully or not.

Execute the following command:

c:\>eui -version

If you get following result, then it means you have installed Euphoria successfully;
otherwise you have to go back and check all the steps again.

c:\>eul -version
Euphoria Interpreter 4.0.0 beta 2 (r2670) for Windows

Using Managed Memory

D tutorials °

SYLEARMINILEG

http://www.rapideuphoria.com/
http://www.rapideuphoria.com/

Euphoria

c:\>

That is it, Euphoria Programming Environment is ready on your WIN32 machine, and
you can start writing complex programs in easy steps.

Euphoria Interpreters

Depending on the platform you are using, Euphoria has multiple interpreters:
e The main interpreter is eui.

e On windows platforms, you have two choices. If you run eui then a console
window is created. If you run euiw then no console is created, making it
suitable for GUI applications.

e Euphoria does not care about your choice of file extensions. By convention
however; the console-based applications come with .ex extension.

e GUI-based applications have .exw extension and the include files have .e
extension.

[{)]> tutorials 7

SYLEARMINILEG

3. BASIC SYNTAX

The Euphoria language has many similarities to Perl, C, and Java. However, there are
some definite differences between the languages. This chapter is designed to quickly
get you up to speed on the syntax that is expected in Euphoria.

This tutorial assumes you are working with Linux and all the examples have been
written on Linux platform. But it is observed that there is no any prominent difference
in program syntax on Linux and WIN32. Hence you can follow the same steps on
WIN32.

First Euphoria Program

Let us write a simple Euphoria program in a script. Type the following source code in
test.ex file and save it.

#!/home/euphoria-4.0b2/bin/eui

puts(1l, "Hello, Euphorial!\n")

Let us say, Euphoria interpreter is available in /home/euphoria-4.0b2/bin/ directory.
Now run this program as follows:

$ chmod +x test.ex # This is to make file executable

$./test.ex

This produces the following result:

Hello, Euphorial

This script used a built-in function puts() which takes two arguments. First argument
indicates file name or device number, and second argument indicates a string which
you want to print. Here 1 indicates STDOUT device.

Euphoria Identifiers

A Euphoria identifier is a name used to identify a variable, function, class, module,
or other object. An identifier starts with a letter A to Z or a to z and then followed by
letters, digits, or underscores.

) tutorialspoint 8

SIMPLYEASYLEARNINIEG

Euphoria

Euphoria does not allow punctuation characters such as @, $, and % within
identifiers.

Euphoria is a case sensitive programming language.
Thus Manpower and manpower are two different identifiers in Euphoria. For
example, the valid identifiers are:

e n
e color26
e ShellSort

e quick_sort

e a_very_long_indentifier

Reserved Words

The following list shows the reserved words in Euphoria. These reserved words may
not be used as constant or variable or any other identifier names. Euphoria keywords
contain lowercase letters only.

and exit override
as export procedure
break fallthru public

by for retry

case function return
constant global routine
continue goto switch

do if then

else ifdef to

elsedef include type

D tutorials °

SYLEARMINILEG

Euphoria

elsif label until
elsifdef loop while
end namespace with
entry not without
enum or xor
Expressions

Euphoria lets you calculate results by forming expressions. However, in Euphoria you
can perform calculations on entire sequences of data with one expression.

You can handle a sequence much as you would handle a single humber. It can be
copied, passed to a subroutine, or calculated upon as a unit. For example:

{1,2,3} + 5

This is an expression that adds the sequence {1, 2, 3} and the atom 5 to get the
resulting sequence {6, 7, 8}. You would learn sequences in subsequent chapters.

Blocks of Code

One of the first caveats programmers encounter when learning Euphoria is the fact
that there are no braces to indicate blocks of code for procedure and function
definitions or flow control. Blocks of code are denoted by associated keywords.

The following example shows if...then...end if block:

if condition then

code block comes here

end if

[{]> tutorials 10

SYLEARMINILEG

Euphoria

Multi-Line Statements

Statements in Euphoria typically end with a new line. Euphoria does however, allow
to write a single statement in multiple lines. For example:

total = item_one +
item _two +

item_three

Escape Characters

Escape characters may be entered using a back-slash. For example:

The following table is a list of escape or non-printable characters that can be
represented with backslash notation.

Backslash notation Description
\n Newline
\r Carriage return
\t Tab
\\ Backslash
\" Double quote
\' Single quote

Comments in Euphoria

Any comments are ignored by the compiler and have no effect on execution speed.
It is advisable to use more comments in your program to make it more readable.

There are three forms of comment text:

1. Comments start by two dashes and extend to the end of the current line.

D tutorials &

SYLEARMINILEG

Euphoria

2. The multi-line format comment is kept inside /*...*/, even if that occurs on a
different line.

3. You can use a special comment beginning with the two character sequence
“#!” only on the first line of the program.

Examples

#!/home/euphoria-4.0b2/bin/eui

-- First comment

puts(1, "Hello, Euphorial!\n") -- second comment

/* This is a comment which extends over a number
of text lines and has no impact on the program

*/

This produces the following result:

Hello, Euphoria!

Note: You can use a special comment beginning with “#!”. This informs the Linux
shell that your file should be executed by the Euphoria interpreter.

|\' tutorials 12

SIMPLYEASYLEARNINIG

4. EUPHORIA VARIABLES

Variables are nothing but reserved memory locations to store values. This means
when you create a variable, you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides
what can be stored in the reserved memory. Therefore, by assigning different data
types to variables, you can store integers, decimals, or characters in these variables.
Euphoria data types are explained in different chapter.

These memory locations are called variables because their value can be changed
during their life time.

Variable Declaration

Euphoria variables have to be explicitly declared to reserve memory space. Thus
declaration of a variable is mandatory before you assign a value to a variable.

Variable declarations have a type name followed by a list of the variables being
declared. For example:

integer x, y, z

sequence a, b, x

When you declare a variable, you name the variable and you define which sort of
values may legally be assigned to the variable during execution of your program.

The simple act of declaring a variable does not assign any value to it. If you attempt
to read it before assigning any value to it, Euphoria will issue a run-time error as
"variable xyz has never been assigned a value”.

Assigning Values

The equal sign (=) is used to assign values to variables. Variable can be assigned in
the following manner:

Variable_Name = Variable_Value

For example:

#!/home/euphoria/bin/eui

) tutorialspoint 13

SIMPLYEASYLEARNINIEG

Euphoria

-- Here is the declaration of the variables.
integer counter
integer miles

sequence name

counter = 100 -- An integer assignment
miles = 1000.0 -- A floating point
name = "John" -- A string (sequence)

printf(1, "Value of counter %d\n", counter)
printf(1, "Value of miles %f\n", miles)

printf(1, "Value of name %s\n", {name})

Here 100, 1000.0, and "John" are the values assighed
to counter, miles and name variables, respectively. This program produces the
following result:

Value of counter 100

Value of miles 1000.000000

Value of name John

To guard against forgetting to initialize a variable, and also because it may make the
code clearer to read, you can combine declaration and assignment —

integer n = 5

This is equivalent to the following:

integer n

n=>5

D tutorials 1

SYLEARMINILEG

Euphoria

Identifier Scope

The scope of an identifier is a description of what code can access it. Code in the
same scope of an identifier can access that identifier and code not in the same scope
as identifier cannot access it.

The scope of a variable depends upon where and how it is declared.

If it is declared within a for, while, loop, or switch, its scope starts at the
declaration and ends at the respective end statement.

In an if statement, the scope starts at the declaration and ends either at the
next else, elsif, or end if statement.

If a variable is declared within a routine, the scope of the variable starts at the
declaration and ends at the routine's end statement. This is knows as a private
variable.

If a variable is declared outside of a routine, its scope starts at the declaration
and ends and the end of the file it is declared in. This is known as a module
variable.

The scope of a constant that does not have a scope modifier, starts at the
declaration and ends and the end of the file it is declared in.

The scope of a enum that does not have a scope modifier, starts at the
declaration and ends and the end of the file it is declared in.

The scope of all procedures, functions, and types, which do not have a scope
modifier, starts at the beginning of the source file and ends at the end of the
source file in which they are declared.

Constants, enums, module variables, procedures, functions and types, which do not
have a scope modifier are referred to as locals. However, these identifiers can have
a scope modifier preceding their declaration, which causes their scope to extend
beyond the file they are declared in.

&

If the keyword global precedes the declaration, the scope of these identifiers
extends to the whole application. They can be accessed by code anywhere in
the application files.

If the keyword public precedes the declaration, the scope extends to any file
that explicitly includes the file in which the identifier is declared, or to any file
that includes a file that in turn public includes the file containing
the public declaration.

If the keyword export precedes the declaration, the scope only extends to any
file that directly includes the file in which the identifier is declared.

tutorials 15

SYLEARMINILEG

Euphoria

When you include a Euphoria file in another file, only the identifiers declared using
a scope modifier are accessible to the file doing the include. The other declarations
in the included file are invisible to the file doing the include.

|\' tutorials 16

SIMPLYEASYLEARNINIG

5. EUPHORIA CONSTANTS

Constants are also variables that are assigned an initial value that can never change
in the program’s life. Euphoria allows to define constants using constant keyword as
follows:

constant MAX = 100
constant Upper = MAX - 10, Lower =5

constant name_list = {"Fred", "George", "Larry"}

The result of any expression can be assigned to a constant, even one involving calls
to previously defined functions, but once the assignment is made, the value of the
constant variable is "locked in".

Constants may not be declared inside a subroutine. The scope of a constant that
does not have a scope modifier, starts at the declaration and ends and the end of the
file it is declared in.

Examples

#!/home/euphoria-4.0b2/bin/eui

constant MAX = 100

constant Upper = MAX - 10, Lower =5

printf(1, "Value of MAX %d\n", MAX)
printf(1, "Value of Upper %d\n", Upper)

printf(1, "Value of Lower %d\n", Lower)

MAX = MAX + 1

printf(1, "Value of MAX %d\n", MAX)

This produces the following error:

) tutorialspoint 17

SIMPLYEASYLEARNINIEG

Euphoria

./test.ex:10
<0110>:: may not change the value of a constant
MAX = MAX + 1

N

Press Enter

If you delete last two lines from the example, then it produces the following result:

Value of MAX 100
Value of Upper 90

Value of Lower 5

The enums

An enumerated value is a special type of constant where the first value defaults to
the number 1 and each item after that is incremented by 1. Enums can only take
numeric values.

Enums may not be declared inside a subroutine. The scope of an enum that does not
have a scope modifier, starts at the declaration and ends and the end of the file it is
declared in.

Examples

#!/home/euphoria-4.0b2/bin/eui

enum ONE, TWO, THREE, FOUR

printf(1, "Value of ONE %d\n", ONE)
printf(1, "Value of TWO %d\n", TWO)
printf(1, "Value of THREE %d\n", THREE)

printf(1, "Value of FOUR %d\n", FOUR)

This will produce following result —

D tutorials 8

SYLEARMINILEG

Euphoria

Value

Value

Value

Value

of ONE 1

of TWO 2

of THREE 3

of FOUR 4

You can change the value of any one item by assigning it a numeric value.
Subsequent values are always the previous value plus one, unless they too are
assigned a default value.

#!/home/euphoria-4.0b2/bin/eui

enum ONE,

printf(1, "Value

printf(1, "Value

printf(1, "Value

printf(1, "Value

printf(1, "Value

TWO, THREE, ABC=10, XYZ

of ONE %d\n", ONE)
of TWO %d\n", TWO)
of THREE %d\n", THREE)
of ABC %d\n", ABC)

of XYZ %d\n", XYZ)

This produces the following result:

Value

Value

Value

Value

Value

of ONE 1

of TWO 2

of THREE 3

of ABC 10

of XYz 11

Sequences use integer indices, but with enum you may write code like this:

enum X, Y
sequence point = { 0,0 }
point[X] = 3
. L]
|\ tutorials 19
SIMPLYEASYLEARRNINIEG

Euphoria

point[Y] = 4

PLYEASYLEARNINIEG

|\' A tutorials 20

6. EUPHORIA DATATYPES

The data stored in memory can be of many types. For example, a person's age is
stored as a numeric value and his or her address is stored as alphanumeric
characters.

Euphoria has some standard types that are used to define the operations possible on
them and the storage method for each of them.

Euphoria has following four standard data types —
e integer
e atom
e sequence

e oObject

The understanding of atoms and sequences is the key to understanding Euphoria.

Integers

Euphoria integer data types store numeric values. They are declared and defined as
follows:

integer varl, var2

varl 1

var2 = 100

The variables declared with type integer must be atoms with integer values from -
1073741824 to +1073741823 inclusive. You can perform exact calculations on larger
integer values, up to about 15 decimal digits, but declare them as atom, rather than
integer.

Atoms

All data objects in Euphoria are either atoms or sequences. An atom is a single
numeric value. Atoms can have any integer or double-precision floating point value.
Euphoria atoms are declared and defined as follows:

) tutorialspoint 21

SIMPLYEASYLEARNINIEG

Euphoria

atom varl, var2, var3

varl = 1000
var2 = 198.6121324234
var3 = 'E'

The atoms can range from approximately -1e300 to +1e300 with 15 decimal digits
of accuracy. An individual character is an atom which must may be entered using
single quotes. For example, all the following statements are legal:

-- Following is equivalent to the atom 66 - the ASCII code for B

char = 'B'

-- Following is equivalent to the sequence {66}

sentence = "B"

Sequences

A sequence is a collection of numeric values which can be accessed through their
index. All data objects in Euphoria are either atoms or sequences.

Sequence index starts from 1 unlike other programming languages where array index
starts from 0. Euphoria sequences are declared and defined as follows:

sequence varl, var2, var3, var4

varl = {2, 3, 5, 7, 11, 13, 17, 19}
var2 = {1, 2, {3, 3, 3}, 4, {5, {6}}}
var3 = {{"zara", "ali"}, 52389, 97.25}
vard = {} -- the 0 element sequence

A character string is just a sequence of characters which may be entered using
double quotes. For example, all the following statements are legal:

D tutorials =

SYLEARMINILEG

Euphoria

word = 'word'

sentence = "ABCDEFG"

Character strings may be manipulated and operated upon just like any other
sequences. For example, the above string is entirely equivalent to the sequence:

sentence = {65, 66, 67, 68, 69, 70, 71}

You will learn more about sequence in Euphoria - Sequences.

Objects

This is a super data type in Euphoria which may take on any value including atoms,
sequences, or integers. Euphoria objects are declared and defined as follows:

object varl, var2, var3

varl = {2, 3, 5, 7, 11, 13, 17, 19}
var2 = 100
var3 = 'E'

An object may have one of the following values:

e a sequence

e an atom

e an integer

e an integer used as a file number

e a string sequence, or single-character atom

SYLEARMINILEG

[{]> tutorials 2

http://localhost/euphoria/euphoria_sequences.htm

/. EUPHORIA OPERATORS

Euphoria provides a rich set of operators to manipulate variables. We can divide all
the Euphoria operators into the following groups:

e Arithmetic Operators
e Relational Operators

e Logical Operators

¢ Assignment Operators

e Miscellaneous Operators

The Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they
are used in Algebra. The following table lists the arithmetic operators. Assume integer
variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Addition: Adds values on either side of the operator | A + B gives 30

- Subtraction: Subtracts right hand operand from | A - B gives -10
left hand operand

* Multiplication: Multiplies values on either side of | A * B gives 200
the operator

/ Division: Divides left hand operand by right hand | B / A gives 2
operand

+ Unary Plus: This has no impact on the variable | +B gives 20
value.

- Unary Minus: This creates a negative value of the | -B gives -20
given variable.

) tutorialspoint 24

SIMPLYEASYLEARNINIEG

Euphoria

The Relational Operators

There are following relational operators supported by Euphoria language. Assume
variable A holds 10 and variable B holds 20 then:

Operator Description Example

= Checks if the value of two operands are equal | (A = B) is not true.
or not, if yes then condition becomes true.

I= Checks if the value of two operands are equal | (A != B) is true.
or not, if values are not equal then condition
becomes true.

> Checks if the value of left operand is greater | (A > B) is not true.
than the value of right operand, if yes then
condition becomes true.

< Checks if the value of left operand is less than | (A < B) is true.
the value of right operand, if yes then
condition becomes true.

>= Checks if the value of left operand is greater | (A >= B) is not true.
than or equal to the value of right operand, if
yes then condition becomes true.

<= Checks if the value of left operand is less than | (A <= B) is true.
or equal to the value of right operand, if yes
then condition becomes true.

The Logical Operators

The following table lists the logical operators. Assume boolean variables A holds 1
and variable B holds 0 then:

Operator Description Example

SYLEARMINILEG

D tutorials 2

Euphoria

and

Called Logical AND operator. If both the
operands are non zero then then condition
becomes true.

(A and B) is false.

or

Called Logical OR Operator. If any of the two
operands are non zero then then condition
becomes true.

(A or B) is true.

xor

Called Logical XOR Operator. Condition is true
if one of them is true, if both operands are
true or false then condition becomes false.

(A xor B) is true.

not

Called Logical NOT Operator which negates
the result. Using this operator, true becomes
false and false becomes true

not(B) is true.

You can also apply these operators to numbers other than 1 or 0. The convention is:
zero means false and non-zero means true.

The Assignment Operators
There are following assignment operators supported by Euphoria language:
Operator | Description Example
= Simple assignment operator, Assigns | C = A + B assigns value of
values from right side operands to left side | A + B into C
operand
+= Add AND assignment operator, It adds | C += A is equivalent to

right operand to the left operand and
assign the result to left operand

C=C+A

Subtract AND assignment operator, It | C -
C=C-A

subtracts right operand from the left
operand and assign the result to left
operand

A is equivalent to

[{)]> tutorials

SYLEARMINILEG

26

Euphoria

*= Multiply AND assignment operator, It | C *= A is equivalent to
multiplies right operand with the left C=C*A
operand and assign the result to left B
operand
/= Divide AND assignment operator, It divides | C /= A is equivalent to
left operand with the right operand and C=C/A
assign the result to left operand -
&= Concatenation operator C &= {2} is same as
C={C}&{2}
Note: The equals symbol '=' used in an assignment statement is not an operator, it

is just a part of the syntax.

Miscellaneous Operators

There are few other operators supported by Euphoria Language.

The '&' Operator

Any two objects may be concatenated using “&” operator. The result is a sequence

with a length equal to the sum of the lengths of the concatenated objects.

For example:

#!/home/euphoria-4.0b2/bin/eui

sequence a, b, c

a =11, 2, 3}

b

{4}

{1, 2, 3} & {4}

C

printf(1, "Value of c[1] %d\n", c[1])
printf(1, "Value of c[2] %d\n", c[2])

printf(1, "Value of c[3] %d\n", c[3])

D tutorials

SYLEARMINILEG

27

Euphoria

printf(1, "Value of c[4] %d\n", c[4])

This produces the following result:

Value of c[1] 1
Value of c[2] 2
Value of c[3] 3

Value of c[4] 4

Precedence of Euphoria Operators

Operator precedence determines the grouping of terms in an expression. This affects
how an expression is evaluated. Certain operators have higher precedence than
others; for example, the multiplication operator has higher precedence than the
addition operator.

For example, x =7 + 3 * 2
Here, x is assigned 13, not 20 because operator * has higher precedence than +.
Hence it first starts with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with
the lowest appear at the bottom. Within an expression, higher precedence operators
is evaluated first.

Category Operator Associativity
Postfix function/type
calls
Unary + - I not Right to left
Multiplicative */ Left to right
Additive + - Left to right
Concatenation & Left to right

D tutorials 28

SYLEARMINILEG

Euphoria

Relational > >= < <= Left to right
Equality =l= Left to right
Logical AND and Left to right
Logical OR or Left to right
Logical XOR xor Left to right
Comma , Left to right
D eutorialspoint »

8. EUPHORIA BRANCHING

Branching is the most important aspect of any programming language. While writing
your program, you may encounter a situation when you have to take a decision or
you have to select one option out of the given many options.

Following diagram shows a simple scenario where a program needs to take one of
the two paths based on the given condition.

true false

true-body false-body

v

next statement

Euphoria provides following three types of decision making (branching or conditional)
statements —

o if statement
e switch statement
o ifdef statement
Let us see the statements in detail:

The if Statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax
The syntax of if statement is:

\ tutorialspoint 30

SIMPLYEASYLEARNINIEG

http://localhost/euphoria/euphoria_if_statement.htm
http://localhost/euphoria/euphoria_switch_statement.htm
http://localhost/euphoria/euphoria_ifdef_statement.htm

Euphoria

if expression then
-- Statements will execute if the expression is true

end if

If the boolean expression evaluates to true then the block of code inside the if
statement is executed. If it evaluates to false, then the first set of code after the end
of the if statement is executed.

Example

#!/home/euphoria-4.0b2/bin/eui

10

integer a

integer b 20

if (a + b) < 40 then
printf(1, "%s\n", {"This is true if statement!"})

end if

if (a + b) > 40 then
printf(1, "%s\n", {"This is not true if statement!"})

end if

This produces the following result:

This is true if statement!

The if...else Statement

An if statement can be followed by an optional else statement, which executes when
the boolean expression is false.

Syntax
The syntax of if...else statement is as follows:

D tutorials 3

SYLEARMINILEG

Euphoria

if expression then

-- Statements will execute if the expression is true
else

-- Statements will execute if the expression is false

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a 10

integer b = 20

if (a + b) < 40 then

printf(1, "%s\n", {"This is inside if statement!"})
else

printf(1, "%s\n", {"This is inside else statement!"})

end if

This produces the following result:

This is inside if statement!

The if..elsif...else Statement

An if statement can be followed by any number of optional elsif...else statement,
which is very useful to test various conditions using single if...elsif statement.

Syntax
The syntax of if...elsif...else statement is as follows:

if expressionl then

-- Executes when the Boolean expression 1 is true

D tutorials 2

SYLEARMINILEG

Euphoria

elsif expression2 then

-- Executes when the Boolean expression 2 is true
elsif expression3 then

-- Executes when the Boolean expression 3 is true
else

-- Executes when none of the above condition is true.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a 10

20

integer b

if (a + b) = 40 then
printf(1, "Value of (a + b) is %d\n", a + b)
elsif (a + b) = 45 then
printf(1, "Value of (a + b) is %d\n", a + b)
elsif (a + b) = 30 then
printf(1, "Value of (a + b) is %d\n", a + b)
else
printf(1, "Value of (a + b) is %d\n", 0)

end if

This produces the following result:

Value of (a + b) is 30

D tutorials 3

SYLEARMINILEG

Euphoria

The if..Iabel...then Statement

An if statement can have a label clause just before the first then keyword. Note that
an elsif clause cannot have a label.

An if...lable is used just to name the if block and label hames must be double quoted
constant strings having single or multiple words. The label keyword is a case sensitive
and should be written as label.

Syntax
The syntax of label clause is as follows:

if expression label "Label Name" then
-- Executes when the boolean expression is true

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a 10

integer b 20

if (a + b) = 40 label "First IF Block" then

printf(1, "Value of (a + b) is %d\n", a + b)
elsif (a + b) = 45 then

printf(1, "Value of (a + b) is %d\n", a + b)
elsif (a + b) = 30 then

printf(1, "Value of (a + b) is %d\n", a + b)
else

printf(1, "Value of (a + b) is %d\n", 0)

end if

This produces the following result:

D tutorials .

SYLEARMINILEG

Euphoria

Value of (a + b) is 30

Nested if...else Statement

It is always legal to nest if...else statements. This means you can have one if-else
statement within another if-else statements.

Syntax
The syntax of nested if...else is as follows:

if expressionl then
-- Executes when the boolean expressionl is true
if expression2 then
-- Executes when the boolean expression2 is true
end if

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10
integer b = 20
integer c = ©

if ¢ = @ then
printf(1, "Value of c is equal to %d\n", 0)
if (a + b) = 30 then
printf(1, "Value of (a + b) is equal to %d\n", 30)
else

printf(1, "Value of (a + b) is equal to %d\n", a + b)

D tutorials *

SYLEARMINILEG

Euphoria

end if
else
printf(1, "Value of c is equal to %d\n", c)

end if

This produces the following result:

Value of ¢ is equal to ©

Value of (a + b) is equal to 30

The switch Statement

The switch statement is used to run a specific set of statements, depending on the
value of an expression. It often replaces a set of if...elsif statements giving you more
control and readability of your program.

Syntax
The syntax of simple switch statement is as follows:

switch expression do
case <val> [, <val-1>....] then
-- Executes when the expression matches one of the values
case <val> [, <val-1>....] then
-- Executes when the expression matches one of the values
case else
-- Executes when the expression does not matches any case.

end if

The <val> in a case must be either an atom, literal string, constant or enum. Multiple
values for a single case can be specified by separating the values by commas. By
default, control flows to the end of the switch block when the next case is
encountered.

D tutorials *

SYLEARMINILEG

Euphoria

Example

#!/home/euphoria-4.0b2/bin/eui

atom marks = 'C'

switch marks do

case 'A' then

puts(1l, "Excellent!\n")
case 'B', 'C' then

puts(1l, "Well done!\n")
case 'D' then

puts(1l, "You passed!\n")
case 'F' then

puts(1l, "Better try again!\n")
case else

puts(1l, "Invalid grade!\n")

end switch

This produces the following result:

Well done!

The switch...with fallthru Statement

The case statement of a switch is executed when it matches with the given
expression value and by default it comes out. By default, control flows to the end of
the switch block when the next case is encountered.

The default for a particular switch block can be changed so that control passes to the
next executable statement whenever a new case is encountered by using with
fallthru in the switch statement:

D tutorials ¥

SYLEARMINILEG

Euphoria

Syntax
The syntax of simple switch...with fallthru statement is as follows:

switch expression with fallthru do
case <val> [, <val-1>....] then
-- Executes when the expression matches one of the values
break -- optional to come out of the switch from this point.
case <val> [, <val-1>....] then
-- Executes when the expression matches one of the values
break -- Optional to come out of the switch from this point.
case else
-- Executes when the expression does not matches any case.
break -- Optional to come out of the switch from this point.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

atom marks = 'C'

switch marks with fallthru do
case 'A' then
puts(1, "Excellent!\n")
case 'B', 'C' then
puts(1, "Well done!\n")
case 'D' then

puts(1l, "You passed!\n")

|\' tutorials 38

SIMPLYEASYLEARNINIG

Euphoria

case 'F' then

puts(1l, "Better try again!\n")
case else

puts(1l, "Invalid grade!\n")

end switch

This produces the following result:

Well done!
You passed!
Better try again!

Invalid grade!

You can use optional break statement to come out from a point inside a switch
statement as follows:

#!/home/euphoria-4.0b2/bin/eui

atom marks = 'C'

switch marks with fallthru do

case 'A' then
puts(1, "Excellent!\n")
break

case 'B', 'C' then
puts(1, "Well done!\n")
break

case 'D' then
puts(1l, "You passed!\n")

break

D tutorials »

SYLEARMINILEG

Euphoria

case 'F' then
puts(1l, "Better try again!\n")
break

case else
puts(1l, "Invalid grade!\n")
break

end switch

This produces the following result:

Well done!

The switch....label Statement

The switch statement can have an optional label to name the switch block. This
name can be used in nested switch break statements to break out of an enclosing
switch rather than just the owning switch.

A switch label is used just to name the block and label names must be double quoted
constant strings having single or multiple words. The label keyword is a case sensitive
and should be written as label.

Syntax
The syntax of simple switch...label statement is as follows:

switch expression label "Label Name" do
case <val> [, <val-1>....] then
-- Executes when the expression matches one of the values
break "LEBEL NAME"
case <val> [, <val-1>....] then
-- Executes when the expression matches one of the values
break "LEBEL NAME"

case else

D tutorials 40

SYLEARMINILEG

Euphoria

-- Executes when the expression does not matches any case.
break "LEBEL NAME"

end if

Example

#!/home/euphoria-4.0b2/bin/eui

1]
@]

atom marks

1]
-

atom scale

switch marks label "MARKS" do
case 'A' then
puts(1, "Excellent!\n")
case 'B', 'C' then
puts(1, "Well done!\n")
switch scale label "SCALE" do
case 'U' then
puts(1, "Upper scale!\n")
break "MARKS"
case 'L' then
puts(1, "Lower scale!\n")
break "MARKS"
case else
puts(1, "Invalid scale!\n")
break "MARKS"
end switch

case 'D' then

|\' tutorials 41

SIMPLYEASYLEARNINIG

Euphoria

puts(1l, "You passed!\n")
case 'F' then

puts(1l, "Better try again!\n")
case else

puts(1l, "Invalid grade!\n")

end switch

This produces the following result:

Well done!

Lower scale!

Note: If you are not using a with fallthru statement then you do not need to use a
label because switch statement would come out automatically.

The ifdef Statement

The ifdef statement is executed at parse time not runtime. This allows you to change
the way your program operates in a very efficient manner.

Since the ifdef statement works at parse time, runtime values cannot be checked,
instead special definitions can be set or unset at parse time as well.

Syntax
The syntax of ifdef statement is as follows:

ifdef macro then

-- Statements will execute if the macro is defined.

end if

If the boolean expression evaluates to true then the block of code inside the if
statement is executed. If not, then the first set of code after the end of the ifdef
statement will be executed.

The ifdef checks the macros defined by using with define keywords. There are plenty
of macros defined like WIN32_CONSOLE, WIN32, or LINUX. You can define your own
macros as follows:

D tutorials +2

SYLEARMINILEG

Euphoria

with define MY_WORD -- defines

You can un-define an already defined word as follows:

without define OTHER_WORD -- undefines

Example

#!/home/euphoria-4.0b2/bin/eui

with define DEBUG

10

integer a

integer b = 20

ifdef DEBUG then
puts(1l, "Hello, I am a debug message one\n")

end ifdef

if (a + b) < 40 then
printf(1, "%s\n", {"This is true if statement!"})

end if

if (a + b) > 40 then
printf(1, "%s\n", {"This is not true if statement!"})

end if

This produces the following result:

Hello, I am a debug message one

This is true if statement!

|\' tutorials

SIMPLYEASYLEARNINIG

43

Euphoria

The ifdef...elsedef Statement

You can take one action if given macro is defined otherwise you can take another

action in case given macro is not defined.

Syntax
The syntax of ifdef...elsedef statement is as follows:

ifdef macro then

-- Statements will execute if the macro is defined.

elsedef

-- Statements will execute if the macro is not defined.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

ifdef WIN32 then

puts(1, "This is windows 32 platform\n")
elsedef

puts(1, "This is not windows 32 platform\n")

end ifdef

When you run this program on Linux machine, it produces the following result:

This is not windows 32 platform

The ifdef...elsifdef Statement

You can check multiple macros using ifdef...elsifdef statement.

Syntax
The syntax of ifdef...elsifdef statement is as follows:

D tutorials

SYLEARMINILEG

44

Euphoria

ifdef macrol then

-- Statements will execute if the macrol is defined.

elsifdef macro2 then

-- Statements will execute if the macro2 is defined.

elsifdef macro3 then

-- Statements will execute if the macro3 is defined.

elsedef

-- Statements will execute if the macro is not defined.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

ifdef WIN32 then

puts(1, "This is windows 32 platform\n")
elsifdef LINUX then

puts(1l, "This is LINUX platform\n")
elsedef

puts(1, "This is neither Unix nor Windows\n")

end ifdef

When you run this program on Linux machine, it produces the following result:

This is LINUX platform

All the above statements have various forms which provide you a flexibility and ease
of use based on different situations.

D tutorials *

SYLEARMINILEG

9. EUPHORIA LOOPS

Looping is yet another most important aspect of any programming language. While
writing your program, you may encounter a situation when you have to execute same
statement many times and sometime may be infinite number of times.

There are several ways to specify for how long the process should go on, and how to
stop or otherwise alter it. An iterative block may be informally called a loop, and each
execution of code in a loop is called an iteration of the loop.

The following diagram shows a simple logical flow of a loop:

False

Test
Expression

Repeat

Body Block

Next Statement

Euphoria provides following three types of loop statements:

¢ while statement
¢ loop until statement

¢ for statement

All the above statements provide you flexibility and ease of use based on different
situations. Let us see them in detail one by one:

\ tutorialspoint 46

SIMPLYEASYLEARNINIEG

http://localhost/euphoria/euphoria_while_statement.htm
http://localhost/euphoria/euphoria_until_statement.htm
http://localhost/euphoria/euphoria_for_statement.htm

Euphoria

While Statement

A while loop is a control structure that allows you to repeat a task for a certain number
of times.

Syntax
The syntax of a while loop is as follows:

while expression do
-- Statements executed if expression returns true

end while

When executing, if the expression results in true then the actions inside the loop is
executed. This continues as long as the expression result is true.

The key point of the while loop is that, the loop might not ever run. When the
expression is tested and the result is false, the loop body is skipped and the first
statement after the while loop is executed.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

while a < 20 do
printf(1, "value of a : %d\n", a)
a=a+1

end while

This produces the following result:

value of a : 10

value of a : 11

value of a : 12

value of a : 13

D tutorials 47

SYLEARMINILEG

Euphoria

value of a : 14

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

The while....with entry Statement

It is often the case that the first iteration of a loop is somehow special. Some things
have to be done before the loop starts. They are done before the statement starting
the loop.

The with entry statement serves the purpose very well. You need to use this
statement with while loop and just add the entry keyword at the point you wish the
first iteration starts.

Syntax
The syntax of a while loop with entry is as follows:

while expression with entry do

-- Statements executed if expression returns true
entry

-- Initialisation statements.

end while

Before executing the expression, it executes initialization statements and then it
starts as a normal while loop. Later, these initialization statements become part of
the loop body.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

D tutorials 48

SYLEARMINILEG

Euphoria

while a < 20 with entry do
printf(1, "value of a : %d\n", a)
a=a+1

entry
a=a+ 2

end while

This produces the following result:

value of a : 12

value of a : 15

value of a : 18

The while....label Statement

A while loop can have a label clause just before the first do keyword. You can keep
label clause before or after enter clause.

A while loop label is used just to name the loop block and label names must be double
quoted constant strings having single or multiple words. The label keyword is a case
sensitive and should be written as label.

Syntax
The syntax of a while loop with label clause is as follows:

while expression label "Label Name" do
-- Statements executed if expression returns true

end while

The labels are very useful when you use nested while loops. You can use continue
or exit loop control statements with label names to control the flow of loops.

Example

#!/home/euphoria-4.0b2/bin/eui

D tutorials 4

SYLEARMINILEG

Euphoria

integer a 10

integer b 20
while a < 20 label "OUTER" do
printf(1, "value of a : %d\n", a)
a=a+1
while b < 30 label "INNER" do
printf(1, "value of b : %d\n", b)
b=Db+1
if b > 25 then
continue "OUTER" -- go to start of OUTER loop
end if
end while

end while

This produces the following result:

value of a : 10

value of b : 20

value of b : 21

value of b : 22

value of b : 23

value of b : 24

value of b : 25

value of a : 11

value of b : 26

value of a : 12

|\' tutorials 50

SIMPLYEASYLEARNINIG

Euphoria

value of b : 27

value of a : 13

value of b : 28

value of a : 14

value of b : 29

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

A loop...until loop is similar to a while loop, except that a loop...until loop is
guaranteed to execute at least one time.

Syntax
The syntax of a loop...until is as follows:

loop do
-- Statements to be executed.

until expression

Notice that the expression appears at the end of the loop, hence the statements in
the loop execute once before the expression's value is tested.

If the expression returns true, the flow of control jumps back up to do, and the
statements in the loop execute again. This process repeats until the expression is
false.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

D tutorials ot

SYLEARMINILEG

Euphoria

loop do
printf(1, "value of a : %d\n", a)
a=a+1

until a < 20

This produces the following result:

value of a : 10

value of a : 11

value of a : 12

value of a : 13

value of a : 14

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

The loop....with entry Statement

It is often the case that the first iteration of a loop is somehow special. Some things
have to be done before the loop starts. They are done before the statement starting
the loop.

The with entry statement serves the purpose very well. You need to use this
statement with loop...until and just add the entry keyword at the point you wish the
first iteration starts.

Syntax
The syntax of a loop...until loop with entry is as follows:

loop with entry do
-- Statements to be executed.

entry

D tutorials >

SYLEARMINILEG

Euphoria

-- Initialisation statements.

until expression

Before executing the expression, it executes initialization statements and then it
starts as a normal loop. Later, these initialization statements become part of loop
body.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

loop with entry do

printf(1, "value of a : %d\n", a)

a=a+1
entry
a=a+ 2

until a > 20

This produces the following result:

value of a : 12

value of a : 15

value of a : 18

The loop....Iabel Statement

A loop...until loop can have a label clause just before the first do keyword. You can
keep label clause before or after enter clause.

This label is used just to name the loop block and label names must be double quoted
constant strings having single or multiple words. The label keyword is a case sensitive
and should be written as label.

D tutorials >3

SYLEARMINILEG

Euphoria

Syntax
The syntax of a loop...until with label clause is as follows:

loop label "Label Name" do
-- Statements to be executed.

until expression

The labels are very useful when you use nested loops. You can use continue or
exit loop control statements with label names to control the flow of loops.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a 10

20

integer b

loop label "OUTER" do
printf(1, "value of a : %d\n", a)
a=a+1
loop label "INNER" do
printf(1, "value of b : %d\n", b)
b=Db+1
if b > 25 then
continue "OUTER" -- go to start of OUTER loop
end if
until b > 30

until a > 20

This produces the following result:

value of a : 10

D tutorials >

SYLEARMINILEG

Euphoria

value of b : 20

value of b : 21

value of b : 22

value of b : 23

value of b : 24

value of b : 25

value of a : 11

value of b : 26

value of a : 12

value of b : 27

value of a : 13

value of b : 28

value of a : 14

value of b : 29

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

Note: The above example should work as explained, but looks like Euphoria
interpreter has some problem and it is working as expected, may be it would be fixed
in future versions of Euphoria.

A for loop is a repetition control structure that allows you to efficiently write a loop
that needs to execute a specific number of times.

A for statement sets up a special loop that has its own loop variable. The loop variable
starts with the specified initial value and increments or decrements it to the specified
final value.

A for loop is useful when you know the exact number of times a task is required to
be repeated.

D tutorials >

SYLEARMINILEG

Euphoria

Syntax
The syntax of a for loop is as follows:

for "initial value" to "last value" by "inremental value" do
-- Statements to be executed.

end for

Here, you initialize the value of a variable and then body of the loop is executed.
After every iteration, variable value is increased by the given incremental value. The
last value of the variable is checked and if it is reached, then loop is terminated.

The initial value, last value, and increment must all be atoms. If no increment is
specified then +1 is assumed.

The for loop does not support with entry statement.

Example

#!/home/euphoria-4.0b2/bin/eui

for a =1 to 6 do
printf(1, "value of a %d\n", a)

end for

This produces the following result:

value of a 1

value of a 2

value of a 3

value of a 4

value of a 5

value of a 6

The loop variable is declared automatically. It exists until the end of the loop. The
variable has no value outside of the loop and is not even declared. If you need its
final value, you need to copy it into another variable before leaving the loop.

D tutorials ¢

SYLEARMINILEG

Here is one more example with incremental value:

Euphoria

#!/home/euphoria-4.0b2/bin/eui

for a = 1.0 to 6.0 by 0.5 do

printf(1, "value of a %f\n", a)

end for

This produces the following result:

value of .000000
value of .500000
value of .000000
value of .500000
value of .000000
value of .500000
value of a 4.000000
value of a 4.500000
value of .000000
value of .500000
value of .000000
|\' tutorials 57
SIMPLYEASYLEARNINGEG

10. EUPHORIA FLOW CONTROL

Program execution flow refers to the order in which program statements get
executed. By default the statements get executed one after another.

However; many times the order of execution needs to be altered from the default
order, to get the task done.

Euphoria has a number of flow control statements that you can use to arrange the
execution order of statements.

The exit Statement

Exiting a loop is done with the keyword exit. This causes flow to immediately leave
the current loop and recommence with the first statement after the end of the loop.

Syntax
The syntax of an exit statement is as follows:

exit ["Label Name"] [Number]

The exit statement terminates the latest and innermost loop until an optional label
name or number is specified.

A special form of exit N is exit 0. This leaves all levels of loop, regardless of the
depth. Control continues after the outermost loop block. Likewise, exit -1 exits the
second outermost loop, and so on.

Example

#!/home/euphoria-4.0b2/bin/eui

integer b

for a =1 to 16 do

printf(1, "value of a %d\n", a)

if a = 10 then

) tutorialspoint 58

SIMPLYEASYLEARNINIEG

Euphoria

b=a
exit
end if
end for

printf(1, "value of b %d\n", b)

This produces the following result:

value of a 1

value of a 2

value of a 3

value of a 4

value of a 5

value of a 6

value of a 7

value of a 8

value of a 9

value of a 10

value of b 10

The break Statement

The break statement works exactly like the exit statement, but applies to if
statements or switch statements rather than to loop statements of any kind.

Syntax
The syntax of break statement is as follows:

break ["Label Name"] [Number]

The break statement terminates the latest and innermost if or switch block until an
optional label name or number is specified.

D tutorials »

SYLEARMINILEG

Euphoria

A special form of break N is break 0. This leaves the outer most if or switch block,
regardless of the depth. Control continues after the outermost block. Likewise, break
-1 breaks the second outermost if or switch block, and so on.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a, b

sequence s

{'E','UIJ 'p'}

if s[1] = '"E' then

[
-+
w0n

—
N

—

Il

'u' then

if s[3] = "p' then
break @ -- leave topmost if block

end if

else

end if
else
a==9o
b=20
end if
printf(1, "value of a %d\n", a)

printf(1, "value of b %d\n", b)

This produces the following result:

|\' tutorials 60

SIMPLYEASYLEARNINIG

Euphoria

value of a 3

value of b 1

The continue Statement

The continue statement continues execution of the loop it applies to by going to the
next iteration and skipping the rest of an iteration.

Going to the next iteration means testing a condition variable index and checking
whether it is still within bounds.

Syntax
The syntax of continue statement is as follows:

continue ["Label Name"] [Number]

The continue statement would re-iterate the latest and inner most loop until an
optional label name or number is specified.

A special form of continue N is continue 0. This re-iterate the outer most loop,
regardless of the depth. Likewise, continue -1 starts from the second outermost loop,
and so on.

Example

#!/home/euphoria-4.0b2/bin/eui

for a = 3 to 6 do
printf(1, "value of a %d\n", a)
if a = 4 then
puts(1,"(2)\n")
continue
end if
printf(1, "value of a %d\n", a*a)
end for

This would produce following result:

D tutorials ot

SYLEARMINILEG

Euphoria

value of a 3

value of a 9

value of a 4

(2)

value of a 5

value of a 25

value of a 6

value of a 36

The retry Statement

The retry statement continues execution of the loop it applies to by going to the next

iteration and skipping the rest of an iteration.

Syntax
The syntax of retry statement is as follows:

retry ["Label Name"] [Number]

The retry statement retries executing the current iteration of the loop it applies to.
The statement branches to the first statement of the designated loop neither testing

anything nor incrementing the for loop index.

A special form of retry N is retry 0. This retries executing the outer most loop,
regardless of the depth. Likewise, retry -1 retries the second outermost loop, and so

on.

Normally, a sub-block which contains a retry statement also contains another flow
control keyword like exit, continue, or break. Otherwise, the iteration would be

endlessly executed.

Example

#!/home/euphoria-4.0b2/bin/eui

integer errors

integer files_to_open

&

tutorial

SYLEARMINILEG

62

Euphoria

for i

1 to length(files_to_open) do

th

open(files_to_open[i], "rb")
if fh = -1 then
if errors > 5 then
exit
else
errors += 1
retry
end if
end if
file_handles[i] = fh

end for

Since retry does not change the value of i and tries again opening the same file, there
has to be a way to break from the loop, which the exit statement provides.

The goto Statement

The goto statement instructs the computer to resume code execution at a labeled
place.

The place to resume execution is called the target of the statement. It is restricted
to lie in the current routine, or the current file if outside any routine.

Syntax
The syntax of goto statement is as follows:

goto "Label Name"

The target of a goto statement can be any accessible label statement:

label "Label Name"

D tutorials 3

SYLEARMINILEG

Euphoria

Label names must be double quoted constant strings. Characters that are illegal in
Euphoria identifiers may appear in a label name, since it is a regular string.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = ©

label "FIRST"
printf(1, "value of a %d\n", a)
a += 10
if a < 50 then
goto "FIRST"
end if

printf(1, "Final value of a %d\n", a)

This produces the following result:

value of a @

value of a 10

value of a 20

value of a 30

value of a 40

Final value of a 50

|\' tutorials 64

SIMPLYEASYLEARNINIG

11. SHORT CIRCUIT EVALUATION

When a condition is tested by if, elsif, until, or while using and or or operators, a
short-circuit evaluation is used. For example:

if a < @ and b > @ then

-- block of code

end if

If a < 0 is false, then Euphoria does not bother to test if b is greater than 0. It knows
that the overall result is false regardless. Similarly:

if a < @ or b > 0 then

-- block of code

end if

if a < 0is true, then Euphoria immediately decides that the result true, without testing
the value of b, since the result of this test is irrelevant.

In General, whenever you have a condition of the following form:

A and B

Where A and B can be any two expressions, Euphoria takes a short-cut when A is
false and immediately makes the overall result false, without even looking at
expression B.

Similarly, whenever you have a condition of the following form:

A or B

Where A is true, Euphoria skips the evaluation of expression B, and declares the
result to be true.

Short-circuit evaluation of and and or takes place for if, elsif, until, and while
conditions only. It is not used in other contexts. For example:

x =1or {1,2,3,4,5} -- x should be set to {1,1,1,1,1}

) tutorialspoint 65

SIMPLYEASYLEARNINIEG

Euphoria

If short-circuiting were used here, you would set x to 1, and not even look at
{1,2,3,4,5}, which would be wrong.

Thus, short-circuiting can be used in if, elsif, until, or while conditions, because you
need to only care if the result is true or false, and conditions are required to produce
an atom as a result.

|\' tutorials 66

SIMPLYEASYLEARNINIG

12. EUPHORIA SEQUENCES

A sequence is represented by a list of objects in brace brackets { }, separated by
commas. A sequence can contain both atoms and other sequences. For example:

{2, 3, 5, 7, 11, 13, 17, 19}
{1, 2, {3, 3, 3}, 4, {5, {6}}}
{{"zara", "Ayan"}, 52389, 97.25}

{} -- the 0-element sequence

A single element of a sequence may be selected by giving the element number in
square brackets. Element numbers start at 1.

For example, if x contains {5, 7.2, 9, 0.5, 13} then x[2] is 7.2.
Suppose x[2] contains {11,22,33%}, Now if you ask for x[2] you get {11,22,33} and
if you ask for x[2][3], you get the atom 33.

Example

#!/home/euphoria-4.0b2/bin/eui

sequence X

X = {1: 2, 3, 4}

for a = 1 to length(x) do
printf(1, "value of x[%d] = %d\n", {a, x[a]})

end for

Here, length() is the built-in function which returns length of the sequence. The above
example produces the following result:

value of x[1] =1
value of x[2] = 2
L -
tutorialspont 67

SIMPLYEASYLEARNINIEG

Euphoria

value of x[3] = 3
value of x[4] = 4
Character String

A character string is just a sequence of characters. It may be entered in one of the

two ways:

(a) Using Double Quotes

"ABCDEFG"

(b) Using Raw String Notation

-- Using back-quotes

"ABCDEFG”

or

-- Using three double-quotes

wnABCDEFG™ ™"

You can try the following example to understand the concept:

#!/home/euphoria-4.0b2/bin/eui

sequence X

x = "ABCD"

for a = 1 to length(x) do
printf(1, "value of x[%d] = %s\n", {a, x[a]l})

end for

This produces the following result:

D tutorials

SYLEARMINILEG

68

Euphoria

value of x[1] = A
value of x[2] = B
value of x[3] = C
value of x[4] =D

String Arrays

An array of strings can be implemented using Sequences as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence x = {"Hello", "World", "Euphoria", "", "Last One"}

for a = 1 to length(x) do

printf(1, "value of x[%d] = %s\n", {a, x[a]})

end for

This produces the following result:

value of x[1] = Hello

value of x[2] = World

value of x[3] = Euphoria
value of x[4] =

value of x[5] = Last One
Euphoria Structures

A structure can be implemented using Sequences as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence employee = {

D tutorials

SYLEARMINILEG

69

Euphoria

{"John","Smith"},
45000,
27,

185.5

printf(1, "First Name = %s, Last Name = %s\n",

{employee[1][1],employee[1][2]})

This produces the following result:

First Name = John, Last Name = Smith

There are various operations which can be performed directly on sequences. Let us
see them in detail:

Urinary Operation

When applied to a sequence, a unary operator is actually applied to each element in
the sequence to yield a sequence of results of the same length.

#!/home/euphoria-4.0b2/bin/eui

sequence X

x = -{1, 2, 3, 4}

for a = 1 to length(x) do
printf(1, "value of x[%d] = %d\n", {a, x[a]l})

end for

This produces the following result:

value of x[1] = -1

D tutorials 70

SYLEARMINILEG

Euphoria

value of x[2] = -2
value of x[3] = -3
value of x[4] = -4
Arithmetic Operations

Almost all arithmetic operations can be performed on sequences as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence X, y, a, b, ¢

X = {1: 2, 3}
y = {10, 20, 30}
a=x+y

puts(1, "value of a = {")
for i = 1 to length(a) do

printf(1, "%d,", a[il])
end for

puts(1, "}\n")

b=x-y

puts(l, "value of b = {")

for i = 1 to length(a) do
printf(1, "%d,", b[i])

end for

puts(1, "}\n")

SYLEARMINILEG

[{]> tutorials 7

Euphoria

puts(1, "value of c = {")
for i = 1 to length(c) do

printf(1, "%d,", c[i])
end for

puts(1, "}\n")

This produces the following result:

Value of a

{11,22,33,}

Value of b

{-9,-18,-27,}

Value of c {3,6,9,}

Command Line Options

A user can pass command line options to a Euphoria script and it can be accessed as

a sequence using command_line() function as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence X

x = command_line()

printf(1, "Interpeter Name: %s\n", {x[1]})

printf(1, "Script Name: %s\n", {x[2]})

printf(1, "First Argument: %s\n", {x[3]1})

printf(1, "Second Argument: %s\n", {x[4]})

K> tuterials

[SYLEARMINIG

72

Euphoria

Here printf() is Euphoria's built-in function. Now if you run this script as follows:

$eui test.ex "one" "two

This produces the following result:

Interpeter Name: /home/euphoria-4.0b2/bin/eui
Script Name: test.ex
First Argument: one

Second Argument: two

|\ tutorials

SIMPLYEASYLEARNINIG

73

13. EUPHORIA DATE AND TIME

Euphoria has a library routine that returns the date and time to your program.

The date() Method

The date() method returns a sequence value composed of eight atom elements. The
following example explains it in detail:

#!/home/euphoria-4.0b2/bin/eui

integer curr_year, curr_day, curr_day_of_year, curr_hour,
curr_minute, curr_second
sequence system_date, word_week, word_month, notation,
curr_day_of_week, curr_month
word_week = {"Sunday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday"}
word_month = {"January", "February",
"March", "April", "May",
"June", "July", "August",
"September", "October",

"November", "December"}

-- Get current system date.

\ tutorialspoint 74

SIMPLYEASYLEARNINIEG

Euphoria

system_date = date()

-- Now take individual elements

curr_year = system_date[1] + 1900

curr_month = word_month[system date[2]]

curr_day = system_date[3]

curr_hour = system_date[4]

curr_minute

curr_second

curr_day_of_week

curr_day_of_year =

if curr_hour >= 12
notation = "p.m
else
notation = "a.m
end if

system_date[5]

system_date[6]

word_week[system_date[7]]

system_date[8]

then

if curr_hour > 12 then

curr_hour

end if

if curr_hour
curr_hour = 12

end if

curr_hour - 12

0 then

puts(1, "\nHello Euphoria!\n\n")

printf(1, "Today is %s, %s %d, %d.\n",

tutorials

k SIMPLYEASYLEARNINIG

75

Euphoria

{curr_day_of_week, curr_month,

curr_day, curr_year})

printf(1, "The time is %.2d:%.2d:%.2d %s\n",
{curr_hour, curr_minute,

curr_second, notation})

printf(1, "It is %3d days into the current year.\n",

{curr_day_of_year})

This produces the following result on your standard screen:

Hello Euphorial

Today is Friday, January 22, 20160.
The time is ©2:54:58 p.m.

It is 22 days into the current year.

The time() Method

The time() method returns an atom value, representing the number of seconds
elapsed since a fixed point in time. The following example explains it in detail:

#!/home/euphoria-4.0b2/bin/eui

constant ITERATIONS = 100000000

integer p

atom to@, t1, loop_overhead

to = time()

|\' tutorials 76

SIMPLYEASYLEARNINIG

Euphoria

for i = 1 to ITERATIONS do
-- time an empty loop

end for

loop_overhead = time() - to

printf(1, "Loop overhead:%d\n", loop_overhead)

to = time()

for i 1 to ITERATIONS do

power(2, 20)

©
1}

end for

t1 = (time() - (t@ + loop_overhead))/ITERATIONS

printf(1, "Time (in seconds) for one call to power:%d\n", t1)

This produces the following result:

Loop overhead:1

Time (in seconds) for one call to power:0

Date & Time Related Methods

Euphoria provides a list of methods which helps you in manipulating date and time.

These methods are listed in Euphoria Library Routines.

|\ tutorials

SIMPLYEASYLEARNINIG

77

http://localhost/euphoria/euphoria_library_routines.htm

14. EUPHORIA PROCEDURES

A procedure is a group of reusable code which can be called from anywhere in your
program. This eliminates the need of writing same code again and again. This helps
programmers to write modular code.

Like any other advance programming language, Euphoria also supports all the
features necessary to write modular code using procedures.

You must have seen procedures like printf() and length() in previous chapters. We
are using these procedure again and again but they have been written in core
Euphoria only once.

Euphoria allows you to write your own procedures as well. This section explains how
to write your own procedure in Euphoria.

Procedure Definition

Before you use a procedure, you need to define it. The most common way to define
a procedure in Euphoria is by using the procedure keyword, followed by a unique
procedure name, a list of parameters (that might be empty), and a statement block
which ends with end procedure statement. The basic syntax is as shown below:

procedure procedurename(parameter-1list)

statements

end procedure

Example
A simple procedure called sayHello that takes no parameters is defined here —

procedure sayHello()
puts(1l, "Hello there")

end procedure

) tutorialspoint 78

SIMPLYEASYLEARNINIEG

Euphoria

Calling a Procedure

To invoke a procedure somewhere later in the script, you simply need to write the
name of that procedure as follows:

#!/home/euphoria-4.0b2/bin/eui

procedure sayHello()
puts(1l, "Hello there")

end procedure

-- Call above defined procedure.

sayHello()

This produces the following result:

Hello there

Procedure Parameters

Till now you have seen procedure without a parameter. But there is a facility to pass
different parameters while calling a procedure. These passed parameters can be
captured inside the procedure and any manipulation can be done over those
parameters.

A procedure can take multiple parameters separated by comma.

Example
Let us do a bit modification in our sayHello procedure. This time it takes two
parameters:

#!/home/euphoria-4.0b2/bin/eui

procedure sayHello(sequence name,atom age)
printf(1, "%s is %d years old.", {name, age})

end procedure

D tutorials 7

SYLEARMINILEG

Euphoria

-- Call above defined procedure.

sayHello("zara", 8)

This produces the following result:

zara is 8 years old.

SIMPLYEASYLEARNINIG

|\' tutorials

80

15. EUPHORIA FUNCTIONS

Euphoria functions are just like procedures, but they return a value, and can be used
in an expression. This chapter explains how to write your own functions in Euphoria.

Function Definition

Before we use a function we need to define it. The most common way to define a
function in Euphoria is by using the function keyword, followed by a unique function
name, a list of parameters (that might be empty), and a statement block which ends
withend function statement. The basic syntax is shown below:

function functionname(parameter-list)

statements

return [Euphoria Object]

end function

Example
A simple function called sayHello that takes no parameters is defined here:

function sayHello()
puts(1l, "Hello there")
return 1

end function

Calling a Function

To invoke a function somewhere later in the script, you would simple need to write
the name of that function as follows:

) tutorialspoint 81

SIMPLYEASYLEARNINIEG

Euphoria

#!/home/euphoria-4.0b2/bin/eui

function sayHello()
puts(1l, "Hello there")
return 1

end function

-- Call above defined function.

sayHello()

This produces the following result:

Hello there

Function Parameters

Till now we have seen function without a parameters. But there is a facility to pass
different parameters while calling a function. These passed parameters can be
captured inside the function and any manipulation can be done over those
parameters.

A function can take multiple parameters separated by comma.

Example

Let us do a bit modification in our sayHello function. This time it takes two
parameters:

#!/home/euphoria-4.0b2/bin/eui

function sayHello(sequence name,atom age)
printf(1, "%s is %d years old.", {name, age})
return 1

end function

D tutorials ”

SYLEARMINILEG

Euphoria

-- Call above defined function.

sayHello("zara", 8)

This produces the following result:

zara is 8 years old.

The retum Statement

A Euphoria function must have return statement before closing statement end
function. Any Euphoria object can be returned. You can, in effect, have multiple
return values, by returning a sequence of objects. For example:

return {x_pos, y_pos}

If you have nothing to return, then simply return 1 or 0. The return value 1 indicates
success and 0 indicates failure.

[{]> tutorials o3

SYLEARMINILEG

16. EUPHORIAFILE I/O

Using Euphoria programming language, you can write programs that read and change
file data on your floppy drive or hard drive, or create new files as a form of output.
You can even access devices on your computer such as the printer and modem.

This chapter described all the basic I/O functions available in Euphoria. For
information on more functions, please refer to standard Euphoria documentation.

Displaying on the Screen

The simplest way to produce output is using the puts() statement where you can pass
any string to be displayed on the screen. There is another method printf() which can
also be used in case you have to format a string using dynamic values.

These methods convert the expressions you pass them to a string and write the result
to standard output as follows:

#!/home/euphoria-4.0b2/bin/eui

puts(1l, "Euphoria is really a great language, isn't it?")

This produces the following result on your standard screen:

Euphoria is really a great language, isn't it?

Opening and Closing Files

Euphoria provides basic methods necessary to manipulate files by default. You can
do your most of the file manipulation using the following methods:

e open()
e close()
e printf()
* gets()
e getc()
) tutorialspoint 84

SIMPLYEASYLEARNINIEG

Euphoria

The open Method

Before you can read or write a file, you have to open it using Euphoria's built-
in open()method. This function creates a file descriptor which is utilized to call other
supporting methods associated with it.

Syntax

integer file_num = open(file_name, access_mode)

Above method returns -1 in case there is an error in opening the given file hame.
Here are the parameters:

o file_name: The file_name argument is a string value that contains the name
of the file that you want to access.

e access_mode: The access_mode determines the mode in which the file has
to be opened. For example, read, write append, etc. A complete list of possible
values for file opening modes is given in the following table:

Modes Description

r Opens a text file for reading only. The file pointer is placed at the
beginning of the file.

rb Opens a file for reading only in binary format. The file pointer is placed at
the beginning of the file.

w Opens a text file for writing only. Overwrites the file if the file exists. If
the file does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file
exists. If the file does not exist, creates a new file for writing.

u Opens a file for both reading and writing. The file pointer is set at the
beginning of the file.

ub Opens a file for both reading and writing in binary format. The file pointer
is placed at the beginning of the file.

D tutorials %

SYLEARMINILEG

Euphoria

a Opens a file for appending. The file pointer is at the end of the file if the
file exists (append mode). If the file does not exist, it creates a new file
for writing.

ab Opens a file for appending in binary format. The file pointer is at the end

of the file if the file exists (append mode). If the file does not exist, it
creates a new file for writing.

Example

The following example creates a new text file in the current directory on your Linux
system:

#!/home/euphoria-4.0b2/bin/eui

integer file_num
constant ERROR = 2
constant STDOUT = 1
file _num = open("myfile,txt", "w")
if file_num = -1 then
puts(ERROR, "couldn't open myfile\n")
else
puts(STDOUT, "File opend successfully\n")

end if

If file opens successfully, then it "myfile.txt" is created in your current directory and
produces the following result:

File opend successfully

The close() Method

The close() method flushes any unwritten information and closes the file, after which
no more reading or writing can be done on the file.

D tutorials =

SYLEARMINILEG

Euphoria

Euphoria automatically closes a file when the reference object of a file is reassigned
to another file. It is a good practice to use the close() method to close a file.

Syntax

close(file_num);

Here the file descriptor received while opening a file is passed as a parameter.

Example

The following example creates a file as above and then closes it before existing the
program:

#!/home/euphoria-4.0b2/bin/eui

integer file_num
constant ERROR = 2
constant STDOUT = 1
file _num = open("myfile.txt", "w")
if file_num = -1 then
puts(ERROR, "couldn't open myfile\n")
else
puts(STDOUT, "File opend successfully\n")

end if

if file_num = -1 then
puts(ERROR, "No need to close the file\n")
else
close(file_num)
puts(STDOUT, "File closed successfully\n")

end if

D tutorials ¥

SYLEARMINILEG

Euphoria

This produces the following result:

File opend successfully

File closed successfully

Reading and Writing Files

Euphoria provides a set of access methods to make our lives easier while reading or
writing a file either in text mode or binary mode. Let us see how to
use printf() and gets()methods to read and write files.

The printf{) Method

The printf() method writes any string to an open file.

Syntax

printf(fn, st, x)

Here are the parameters:

e fn: File descriptor received from open() method.

e st: Format string where decimal or atom is formatted using %d and string or
sequence is formatted using %s.

e Xx: If x is a sequence, then format specifiers from st are matched with
corresponding elements of x. If x is an atom, then normally st contains just
one format specifier and it is applied to x. However; if st contains multiple
format specifiers, then each one is applied to the same value x.

Example

The following example opens a file and writes the name and age of a person in this
file:

#!/home/euphoria-4.0b2/bin/eui

integer file_num
constant ERROR = 2

constant STDOUT = 1

D tutorials =

SYLEARMINILEG

Euphoria

file_num = open("myfile.txt", "w")
if file_num = -1 then
puts(ERROR, "couldn't open myfile\n")
else
puts(STDOUT, "File opend successfully\n")

end if

printf(file_num, "My name is %s and age is %d\n", {"Zara", 8})

if file_num = -1 then

puts(ERROR, "No need to close the file\n")
else

close(file_num)

puts(STDOUT, "File closed successfully\n")

end if

The above example creates myfile.txt file. Is writes given content in that file and
finally closes. If you open this file, it would have the following content:

My name is Zara and age is 8

The gets() Method

The gets() method reads a string from an open file.

Syntax

gets(file_num)

Here passed parameter is file description return by the opend() method. This method
starts reading from the beginning of the file line by line. The characters have values
from 0 to 255. The atom -1 is returned on end of file.

D tutorials %

SYLEARMINILEG

Example

Let us take a file myfile.txt which is already created.

Euphoria

#!/home/euphoria-4.0b2/bin/eui

integer file_num

object line

constant ERROR = 2
constant STDOUT = 1
file_num = open("myfile.txt", "r")
if file_num = -1 then
puts(ERROR, "couldn't open myfile\n")
else
puts(STDOUT, "File opend successfully\n")

end if

line = gets(file_num)

printf(STDOUT, "Read content : %s\n", {line})

if file_num = -1 then

puts(ERROR, "No need to close the file\n")
else

close(file_num)

puts(STDOUT, "File closed successfully\n")

end if

|\ tutorials

SIMPLYEASYLEARNINIG

90

Euphoria

This produces the following result:

File opend successfully

Read content : My name is Zara and age is 8

File closed successfully

File & Directory Related Methods

Euphoria provides a list of many methods which helps you in manipulating files. These
methods are listed in Euphoria Library Routines.

[{]> tutorials o1

SYLEARMINILEG

http://localhost/euphoria/euphoria_library_routines.htm

