
Euphoria

 1

Euphoria

 i

About Tutorial

This tutorial gives you basic understanding of Euphoria programming language.

Euphoria is simple, flexible, easy to learn, and interpreted high-level programming

language for DOS, Windows, Linux, FreeBSD, and more. This tutorial describes

everything a programmer needs to know such as its environment, data types, syntax

and operators, file handling, and controlling the flow of program.

Audience

 This tutorial is designed for the aspiring students who are keen to learn and

understand Euphoria in detail. This tutorial would be of great help for the IT

professionals working as programmers. The enthusiastic readers can access this

tutorial as a source of additional reading.

Prerequisites

Before proceeding with this tutorial, you need to have a basic knowledge of working

on Windows or Linux. You need to be familiar with any programming language such

as C, C++. You need to have sound understanding of operating system, memory

allocation and de-allocation, and basics of efficient programming and debugging.

Disclaimer & Copyright

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any manner

without written consent of the publisher. We strive to update the contents of our

website and tutorials as timely and as precisely as possible, however, the contents

may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee

regarding the accuracy, timeliness or completeness of our website or its contents

including this tutorial. If you discover any errors on our website or in this tutorial,

please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Euphoria

 ii

Table of Contents

About Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. EUPHORIA OVERVIEW ... 1

Euphoria Features ... 1

Platform Requirements ... 2

Euphoria Limitations ... 2

Euphoria Licensing ... 2

2. EUPHORIA ENVIRONMENT .. 4

Linux, Free BSD Installation ... 4
Step 1: Installing Files.. 4
Step 2: Setting Up the Path ... 5
Step 3: Confirmation ... 5

WIN32, DOS Installation .. 6
Step 1: Installing Files.. 6
Step 2: Rebooting the Machine .. 6
Step 3: Confirming Success ... 6

Euphoria Interpreters .. 7

3. BASIC SYNTAX ... 8

First Euphoria Program .. 8

Euphoria Identifiers ... 8

Reserved Words .. 9

Expressions .. 10

Blocks of Code ... 10

Euphoria

 iii

Multi-Line Statements ... 11

Escape Characters .. 11

Comments in Euphoria .. 11
Examples ... 12

4. EUPHORIA VARIABLES ... 13

Variable Declaration .. 13

Assigning Values .. 13

Identifier Scope ... 15

5. EUPHORIA CONSTANTS ... 17

Examples ... 17

The enums ... 18
Examples ... 18

6. EUPHORIA DATATYPES .. 21

Integers ... 21

Atoms .. 21

Sequences ... 22

Objects .. 23

7. EUPHORIA OPERATORS ... 24

The Arithmetic Operators .. 24

The Relational Operators ... 25

The Logical Operators .. 25

The Assignment Operators .. 26

Miscellaneous Operators ... 27
The '&' Operator ... 27

Precedence of Euphoria Operators .. 28

Euphoria

 iv

8. EUPHORIA BRANCHING ... 30

The if Statement .. 30
Syntax .. 30
Example... 31

The if...else Statement ... 31
Syntax .. 31
Example... 32

The if...elsif...else Statement ... 32
Syntax .. 32
Example... 33

The if...label...then Statement ... 34
Syntax .. 34
Example... 34

Nested if...else Statement ... 35
Syntax .. 35
Example... 35

The switch Statement .. 36
Syntax .. 36
Example... 37

The switch...with fallthru Statement ... 37
Syntax .. 38
Example... 38

The switch....label Statement .. 40
Syntax .. 40
Example... 41

The ifdef Statement ... 42
Syntax .. 42
Example... 43

The ifdef...elsedef Statement... 44
Syntax .. 44
Example... 44

The ifdef...elsifdef Statement .. 44
Syntax .. 44
Example... 45

9. EUPHORIA LOOPS ... 46

While Statement ... 47

Euphoria

 v

Syntax .. 47
Example... 47

The while....with entry Statement ... 48
Syntax .. 48
Example... 48

The while....label Statement ... 49
Syntax .. 49
Example... 49
Syntax .. 51
Example... 51

The loop....with entry Statement .. 52
Syntax .. 52
Example... 53

The loop....label Statement ... 53
Syntax .. 54
Example... 54
Syntax .. 56
Example... 56

10. EUPHORIA FLOW CONTROL .. 58

The exit Statement .. 58
Syntax .. 58
Example... 58

The break Statement ... 59
Syntax .. 59
Example... 60

The continue Statement .. 61
Syntax .. 61
Example... 61

The retry Statement .. 62
Syntax .. 62
Example... 62

The goto Statement ... 63
Syntax .. 63
Example... 64

11. SHORT CIRCUIT EVALUATION .. 65

12. EUPHORIA SEQUENCES ... 67

Euphoria

 vi

Example... 67

Character String ... 68

String Arrays .. 69

Euphoria Structures ... 69

Urinary Operation ... 70

Arithmetic Operations ... 71

Command Line Options ... 72

13. EUPHORIA DATE AND TIME ... 74

The date() Method .. 74

The time() Method .. 76

Date & Time Related Methods .. 77

14. EUPHORIA PROCEDURES ... 78

Procedure Definition ... 78
Example... 78

Calling a Procedure .. 79

Procedure Parameters ... 79
Example... 79

15. EUPHORIA FUNCTIONS ... 81

Function Definition .. 81
Example... 81

Calling a Function .. 81

Function Parameters ... 82
Example... 82

The return Statement .. 83

16. EUPHORIA FILE I/O .. 84

Displaying on the Screen ... 84

Euphoria

 vii

Opening and Closing Files .. 84

The open Method .. 85
Syntax .. 85
Example... 86

The close() Method ... 86
Syntax .. 87
Example... 87

Reading and Writing Files .. 88

The printf() Method .. 88
Syntax .. 88
Example... 88

The gets() Method .. 89
Syntax .. 89
Example... 90

File & Directory Related Methods .. 91

Euphoria

1

Euphoria stands for End-User Programming with Hierarchical Objects for Robust

Interpreted Applications. Euphoria's first incarnation was created by Robert Craig on

an Atari Mega-ST and it was first released in 1993. It is now maintained by Rapid

Deployment Software.

It is a free, simple, flexible, easy to learn, and interpreted but extremely fast 32-bit

high-level programming language for DOS, Windows, Linux, FreeBSD and more.

Euphoria is being used to develop Windows GUI programs, high-speed DOS games,

and Linux/FreeBSD X Windows programs. Euphoria can also be used for CGI (Web-

based) programming.

Euphoria Features

Here is the list of major features of Euphoria:

 It is a simple, flexible, powerful language definition that is easy to learn and

use.

 It supports dynamic storage allocation which means variables grow or shrink
without the programmer having to worry about allocating and freeing the
memory. It takes care of garbage collection automatically.

 It is extremely faster than conventional interpreters such as Perl and Python.

 Euphoria programs run under Linux, FreeBSD, 32-bit Windows, and any DOS

environment.

 Euphoria programs are not subject to any 640K memory limitations.

 It provides an optimizing Euphoria-To-C translator which you can use to

translate your Euphoria program into C and then compile it with a C compiler

to get an executable (.exe) file. This can boost your program speed by 2 to 5
times.

 Underlying hardware are completely hidden which means programs are not

aware of word-lengths, underlying bit-level representation of values, byte-
order etc.

 Euphoria installation comes along with a full-screen source debugger, an
execution profiler, and a full-screen multi-file editor.

1. EUPHORIA OVERVIEW

Euphoria

2

 It supports run-time error-handling, subscript, and type checking.

 It is an open source language and comes completely free of cost.

Platform Requirements

Euphoria is available on Windows, Linux, FreeBSD, and OSX. Here is the bare

minimum version required with the following platforms −

 WIN32 version: You need Windows 95 or any later version of Windows. It

runs fine on XP and Vista.

 Linux version: You need any reasonably up-to-date Linux distribution, that

has libc6 or later. For example, Red Hat 5.2 or later works fine.

 FreeBSD version: You need any reasonably up-to-date FreeBSD distribution.

 Mac OS X version: You need any reasonably up-to-date Intel based Mac.

Euphoria Limitations

Here are some prominent limitations of Euphoria:

 Even though Euphoria is simple, fast, and flexible enough for the

programmers; it does not provide call support for many important
functionalities. For example, network programming.

 Euphoria was invented in 1993, and still you would not find any book written
on this language. There is also not much documentation available for the

language.

But these days, the language is getting popular very fast and you can hope to have

nice utilities and books available for the language very soon.

Euphoria Licensing

This product is free and open source, and has benefited from the contributions of

many people. You have complete royalty-free rights to distribute any Euphoria

programs that you develop.

Icon files, such as euphoria.ico and binaries available in euphoria\bin, may be

distributed with or without your changes.

You can shroud or bind your program and distribute the resulting files royalty-free.

Some additional 3rd party legal restrictions might apply when you use the Euphoria-

To-C translator.

Euphoria

3

The generous Open Source License allows Euphoria to use for both personal and

commercial purposes. Unlike many other open source licenses, your changes do not

have to be made open source.

http://www.rapideuphoria.com/License.txt

Euphoria

4

This chapter describes about the installation of Euphoria on various platforms. You

can follow the steps to install Euphoria on Linux, FreeBSD, and 32-bit Windows. So

you can choose the steps based on your working environment.

Linux, Free BSD Installation

Official website provides .tar.gz file to install Euphoria on your Linux or BSD OS. You

can download your latest version of Euphoria from its official website Download

Euphoria.

Once you have .tar.gz file, here are three simple steps to be performed to install

Euphoria on your Linux or Free BSD machine:

Step 1: Installing Files
Untar the downloaded file euphoria-4.0b2.tar.gz in a directory where you want to

install Euphoria. If you want to install it in /home directory as follows, then:

$cp euphoria-4.0b2.tar.gz /home

$cd /home

$gunzip euphoria-4.0b2.tar.gz

$tar -xvf euphoria-4.0b2.tar

This creates a directory hierarchy inside /home/euphoria-4.0b2 directory as

follows:

$ls -l

-rw-r--r-- 1 1001 1001 2485 Aug 17 06:15 Jamfile

-rw-r--r-- 1 1001 1001 5172 Aug 20 12:37 Jamrules

-rw-r--r-- 1 1001 1001 1185 Aug 13 06:21 License.txt

drwxr-xr-x 2 1001 1001 4096 Aug 31 10:07 bin

drwxr-xr-x 7 1001 1001 4096 Aug 31 10:07 demo

-rw-r--r-- 1 1001 1001 366 Mar 18 09:02 file_id.diz

2. EUPHORIA ENVIRONMENT

http://www.rapideuphoria.com/
http://www.rapideuphoria.com/

Euphoria

5

drwxr-xr-x 4 1001 1001 4096 Aug 31 10:07 include

-rw-r--r-- 1 1001 1001 1161 Mar 18 09:02 installu.doc

drwxr-xr-x 4 1001 1001 4096 Aug 31 10:07 source

drwxr-xr-x 19 1001 1001 4096 Sep 7 12:09 tests

drwxr-xr-x 2 1001 1001 4096 Aug 31 10:07 tutorial

Note: File name euphoria-4.0b2.tar.gz depends on latest version available. We are

using 4.0b2 version of the language for this tutorial.

Step 2: Setting Up the Path

After installing Euphoria, you need to set proper paths so that your shell can find

required Euphoria binaries and utilities. Before proceeding, there are following three

important environment variables you need to set up:

1. Set PATH environment variable to point /home/euphoria-4.0b2/bin directory.

2. Set EUDIR environment variable to point to /home/euphoria-4.0b2.

3. Set EUINC environment variable to point to /home/euphoria-4.0b2/include.

These variables can be set as follows −

$export PATH=$PATH:/home/euphoria-4.0b2/bin

$export EUDIR=/home/euphoria-4.0b2

$export EUINC=/home/euphoria-4.0b2/include

Note: The above commands used to set environment variables may differ depending

on your Shell. We used bash shell for executing these commands to set the variables.

Step 3: Confirming Installation

Confirm if you installed Euphoria successfully or not.

Execute the following command:

$eui -version

If you get following result, then it means you have installed Euphoria successfully;

otherwise you have to go back and check all the steps again.

$eui -version

Euphoria Interpreter 4.0.0 beta 2 (r2670) for Linux

Euphoria

6

Using System Memory

$

That is it, Euphoria Programming Environment is ready on your UNIX machine, and

you can start writing complex programs in easy steps.

WIN32 and DOS Installation

Official website provides .exe file to install Euphoria on your WIN32 or DOS OS. You

can download your latest version of Euphoria from its official website Download

Euphoria.

Once you have .exe file, here are three simple steps to follow for installing Euphoria

Programming language on your WIN32 or DOS machine:

Step 1: Installing Files
Double click on the downloaded .exe setup program to install all the files. We

downloaded euphoria-40b2.exe file for installation.

The filename euphoria-40b2.exe depends on latest version available. We use version

4 beta 2 of the language.

By default Euphoria would be installed in C:\euphoria-40b2 directory but you can also

select a desired location.

Step 2: Rebooting the Machine

Re-boot your machine to complete the installation.

Step 3: Confirming Installation

Confirm if you installed Euphoria successfully or not.

Execute the following command:

c:\>eui -version

If you get following result, then it means you have installed Euphoria successfully;

otherwise you have to go back and check all the steps again.

c:\>eui -version

Euphoria Interpreter 4.0.0 beta 2 (r2670) for Windows

Using Managed Memory

http://www.rapideuphoria.com/
http://www.rapideuphoria.com/

Euphoria

7

c:\>

That is it, Euphoria Programming Environment is ready on your WIN32 machine, and

you can start writing complex programs in easy steps.

Euphoria Interpreters

Depending on the platform you are using, Euphoria has multiple interpreters:

 The main interpreter is eui.

 On windows platforms, you have two choices. If you run eui then a console

window is created. If you run euiw then no console is created, making it

suitable for GUI applications.

 Euphoria does not care about your choice of file extensions. By convention
however; the console-based applications come with .ex extension.

 GUI-based applications have .exw extension and the include files have .e

extension.

Euphoria

8

The Euphoria language has many similarities to Perl, C, and Java. However, there are

some definite differences between the languages. This chapter is designed to quickly

get you up to speed on the syntax that is expected in Euphoria.

This tutorial assumes you are working with Linux and all the examples have been

written on Linux platform. But it is observed that there is no any prominent difference

in program syntax on Linux and WIN32. Hence you can follow the same steps on

WIN32.

First Euphoria Program

Let us write a simple Euphoria program in a script. Type the following source code in

test.ex file and save it.

#!/home/euphoria-4.0b2/bin/eui

puts(1, "Hello, Euphoria!\n")

Let us say, Euphoria interpreter is available in /home/euphoria-4.0b2/bin/ directory.

Now run this program as follows:

$ chmod +x test.ex # This is to make file executable

$./test.ex

This produces the following result:

Hello, Euphoria!

This script used a built-in function puts() which takes two arguments. First argument

indicates file name or device number, and second argument indicates a string which

you want to print. Here 1 indicates STDOUT device.

Euphoria Identifiers

A Euphoria identifier is a name used to identify a variable, function, class, module,

or other object. An identifier starts with a letter A to Z or a to z and then followed by

letters, digits, or underscores.

3. BASIC SYNTAX

Euphoria

9

Euphoria does not allow punctuation characters such as @, $, and % within

identifiers.

Euphoria is a case sensitive programming language.

Thus Manpower and manpower are two different identifiers in Euphoria. For

example, the valid identifiers are:

 n

 color26

 ShellSort

 quick_sort

 a_very_long_indentifier

Reserved Words

The following list shows the reserved words in Euphoria. These reserved words may

not be used as constant or variable or any other identifier names. Euphoria keywords

contain lowercase letters only.

and exit override

as export procedure

break fallthru public

by for retry

case function return

constant global routine

continue goto switch

do if then

else ifdef to

elsedef include type

Euphoria

10

elsif label until

elsifdef loop while

end namespace with

entry not without

enum or xor

Expressions

Euphoria lets you calculate results by forming expressions. However, in Euphoria you

can perform calculations on entire sequences of data with one expression.

You can handle a sequence much as you would handle a single number. It can be

copied, passed to a subroutine, or calculated upon as a unit. For example:

{1,2,3} + 5

This is an expression that adds the sequence {1, 2, 3} and the atom 5 to get the

resulting sequence {6, 7, 8}. You would learn sequences in subsequent chapters.

Blocks of Code

One of the first caveats programmers encounter when learning Euphoria is the fact

that there are no braces to indicate blocks of code for procedure and function

definitions or flow control. Blocks of code are denoted by associated keywords.

The following example shows if...then...end if block:

if condition then

 code block comes here

end if

Euphoria

11

Multi-Line Statements

Statements in Euphoria typically end with a new line. Euphoria does however, allow

to write a single statement in multiple lines. For example:

total = item_one +

 item_two +

 item_three

Escape Characters

Escape characters may be entered using a back-slash. For example:

The following table is a list of escape or non-printable characters that can be

represented with backslash notation.

Backslash notation Description

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\" Double quote

\' Single quote

Comments in Euphoria

Any comments are ignored by the compiler and have no effect on execution speed.

It is advisable to use more comments in your program to make it more readable.

There are three forms of comment text:

1. Comments start by two dashes and extend to the end of the current line.

Euphoria

12

2. The multi-line format comment is kept inside /*...*/, even if that occurs on a

different line.

3. You can use a special comment beginning with the two character sequence

“#!” only on the first line of the program.

Examples

#!/home/euphoria-4.0b2/bin/eui

-- First comment

puts(1, "Hello, Euphoria!\n") -- second comment

/* This is a comment which extends over a number

of text lines and has no impact on the program

*/

This produces the following result:

Hello, Euphoria!

Note: You can use a special comment beginning with “#!”. This informs the Linux

shell that your file should be executed by the Euphoria interpreter.

Euphoria

13

Variables are nothing but reserved memory locations to store values. This means

when you create a variable, you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides

what can be stored in the reserved memory. Therefore, by assigning different data

types to variables, you can store integers, decimals, or characters in these variables.

Euphoria data types are explained in different chapter.

These memory locations are called variables because their value can be changed

during their life time.

Variable Declaration

Euphoria variables have to be explicitly declared to reserve memory space. Thus

declaration of a variable is mandatory before you assign a value to a variable.

Variable declarations have a type name followed by a list of the variables being

declared. For example:

integer x, y, z

sequence a, b, x

When you declare a variable, you name the variable and you define which sort of

values may legally be assigned to the variable during execution of your program.

The simple act of declaring a variable does not assign any value to it. If you attempt

to read it before assigning any value to it, Euphoria will issue a run-time error as

"variable xyz has never been assigned a value".

Assigning Values

The equal sign (=) is used to assign values to variables. Variable can be assigned in

the following manner:

Variable_Name = Variable_Value

For example:

#!/home/euphoria/bin/eui

4. EUPHORIA VARIABLES

Euphoria

14

-- Here is the declaration of the variables.

integer counter

integer miles

sequence name

counter = 100 -- An integer assignment

miles = 1000.0 -- A floating point

name = "John" -- A string (sequence)

printf(1, "Value of counter %d\n", counter)

printf(1, "Value of miles %f\n", miles)

printf(1, "Value of name %s\n", {name})

Here 100, 1000.0, and "John" are the values assigned

to counter, miles and name variables, respectively. This program produces the

following result:

Value of counter 100

Value of miles 1000.000000

Value of name John

To guard against forgetting to initialize a variable, and also because it may make the

code clearer to read, you can combine declaration and assignment −

integer n = 5

This is equivalent to the following:

integer n

n = 5

Euphoria

15

Identifier Scope

The scope of an identifier is a description of what code can access it. Code in the

same scope of an identifier can access that identifier and code not in the same scope

as identifier cannot access it.

The scope of a variable depends upon where and how it is declared.

 If it is declared within a for, while, loop, or switch, its scope starts at the

declaration and ends at the respective end statement.

 In an if statement, the scope starts at the declaration and ends either at the

next else, elsif, or end if statement.

 If a variable is declared within a routine, the scope of the variable starts at the
declaration and ends at the routine's end statement. This is knows as a private

variable.

 If a variable is declared outside of a routine, its scope starts at the declaration

and ends and the end of the file it is declared in. This is known as a module
variable.

 The scope of a constant that does not have a scope modifier, starts at the

declaration and ends and the end of the file it is declared in.

 The scope of a enum that does not have a scope modifier, starts at the

declaration and ends and the end of the file it is declared in.

 The scope of all procedures, functions, and types, which do not have a scope

modifier, starts at the beginning of the source file and ends at the end of the
source file in which they are declared.

Constants, enums, module variables, procedures, functions and types, which do not

have a scope modifier are referred to as locals. However, these identifiers can have

a scope modifier preceding their declaration, which causes their scope to extend

beyond the file they are declared in.

 If the keyword global precedes the declaration, the scope of these identifiers

extends to the whole application. They can be accessed by code anywhere in
the application files.

 If the keyword public precedes the declaration, the scope extends to any file

that explicitly includes the file in which the identifier is declared, or to any file
that includes a file that in turn public includes the file containing
the public declaration.

 If the keyword export precedes the declaration, the scope only extends to any

file that directly includes the file in which the identifier is declared.

Euphoria

16

When you include a Euphoria file in another file, only the identifiers declared using

a scope modifier are accessible to the file doing the include. The other declarations

in the included file are invisible to the file doing the include.

Euphoria

17

Constants are also variables that are assigned an initial value that can never change

in the program’s life. Euphoria allows to define constants using constant keyword as

follows:

constant MAX = 100

constant Upper = MAX - 10, Lower = 5

constant name_list = {"Fred", "George", "Larry"}

The result of any expression can be assigned to a constant, even one involving calls

to previously defined functions, but once the assignment is made, the value of the

constant variable is "locked in".

Constants may not be declared inside a subroutine. The scope of a constant that

does not have a scope modifier, starts at the declaration and ends and the end of the

file it is declared in.

Examples

#!/home/euphoria-4.0b2/bin/eui

constant MAX = 100

constant Upper = MAX - 10, Lower = 5

printf(1, "Value of MAX %d\n", MAX)

printf(1, "Value of Upper %d\n", Upper)

printf(1, "Value of Lower %d\n", Lower)

MAX = MAX + 1

printf(1, "Value of MAX %d\n", MAX)

This produces the following error:

5. EUPHORIA CONSTANTS

Euphoria

18

./test.ex:10

<0110>:: may not change the value of a constant

MAX = MAX + 1

 ^

Press Enter

If you delete last two lines from the example, then it produces the following result:

Value of MAX 100

Value of Upper 90

Value of Lower 5

The enums

An enumerated value is a special type of constant where the first value defaults to

the number 1 and each item after that is incremented by 1. Enums can only take

numeric values.

Enums may not be declared inside a subroutine. The scope of an enum that does not

have a scope modifier, starts at the declaration and ends and the end of the file it is

declared in.

Examples

#!/home/euphoria-4.0b2/bin/eui

enum ONE, TWO, THREE, FOUR

printf(1, "Value of ONE %d\n", ONE)

printf(1, "Value of TWO %d\n", TWO)

printf(1, "Value of THREE %d\n", THREE)

printf(1, "Value of FOUR %d\n", FOUR)

This will produce following result −

Euphoria

19

Value of ONE 1

Value of TWO 2

Value of THREE 3

Value of FOUR 4

You can change the value of any one item by assigning it a numeric value.

Subsequent values are always the previous value plus one, unless they too are

assigned a default value.

#!/home/euphoria-4.0b2/bin/eui

enum ONE, TWO, THREE, ABC=10, XYZ

printf(1, "Value of ONE %d\n", ONE)

printf(1, "Value of TWO %d\n", TWO)

printf(1, "Value of THREE %d\n", THREE)

printf(1, "Value of ABC %d\n", ABC)

printf(1, "Value of XYZ %d\n", XYZ)

This produces the following result:

Value of ONE 1

Value of TWO 2

Value of THREE 3

Value of ABC 10

Value of XYZ 11

Sequences use integer indices, but with enum you may write code like this:

enum X, Y

sequence point = { 0,0 }

point[X] = 3

Euphoria

20

point[Y] = 4

Euphoria

21

The data stored in memory can be of many types. For example, a person's age is

stored as a numeric value and his or her address is stored as alphanumeric

characters.

Euphoria has some standard types that are used to define the operations possible on

them and the storage method for each of them.

Euphoria has following four standard data types −

 integer

 atom

 sequence

 object

The understanding of atoms and sequences is the key to understanding Euphoria.

Integers

Euphoria integer data types store numeric values. They are declared and defined as

follows:

integer var1, var2

var1 = 1

var2 = 100

The variables declared with type integer must be atoms with integer values from -

1073741824 to +1073741823 inclusive. You can perform exact calculations on larger

integer values, up to about 15 decimal digits, but declare them as atom, rather than

integer.

Atoms

All data objects in Euphoria are either atoms or sequences. An atom is a single

numeric value. Atoms can have any integer or double-precision floating point value.

Euphoria atoms are declared and defined as follows:

6. EUPHORIA DATATYPES

Euphoria

22

atom var1, var2, var3

var1 = 1000

var2 = 198.6121324234

var3 = 'E'

The atoms can range from approximately -1e300 to +1e300 with 15 decimal digits

of accuracy. An individual character is an atom which must may be entered using

single quotes. For example, all the following statements are legal:

-- Following is equivalent to the atom 66 - the ASCII code for B

char = 'B'

-- Following is equivalent to the sequence {66}

sentence = "B"

Sequences

A sequence is a collection of numeric values which can be accessed through their

index. All data objects in Euphoria are either atoms or sequences.

Sequence index starts from 1 unlike other programming languages where array index

starts from 0. Euphoria sequences are declared and defined as follows:

sequence var1, var2, var3, var4

var1 = {2, 3, 5, 7, 11, 13, 17, 19}

var2 = {1, 2, {3, 3, 3}, 4, {5, {6}}}

var3 = {{"zara", "ali"}, 52389, 97.25}

var4 = {} -- the 0 element sequence

A character string is just a sequence of characters which may be entered using

double quotes. For example, all the following statements are legal:

Euphoria

23

word = 'word'

sentence = "ABCDEFG"

Character strings may be manipulated and operated upon just like any other

sequences. For example, the above string is entirely equivalent to the sequence:

sentence = {65, 66, 67, 68, 69, 70, 71}

You will learn more about sequence in Euphoria - Sequences.

Objects

This is a super data type in Euphoria which may take on any value including atoms,

sequences, or integers. Euphoria objects are declared and defined as follows:

object var1, var2, var3

var1 = {2, 3, 5, 7, 11, 13, 17, 19}

var2 = 100

var3 = 'E'

An object may have one of the following values:

 a sequence

 an atom

 an integer

 an integer used as a file number

 a string sequence, or single-character atom

http://localhost/euphoria/euphoria_sequences.htm

Euphoria

24

Euphoria provides a rich set of operators to manipulate variables. We can divide all

the Euphoria operators into the following groups:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operators

 Miscellaneous Operators

The Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they

are used in Algebra. The following table lists the arithmetic operators. Assume integer

variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Addition: Adds values on either side of the operator A + B gives 30

- Subtraction: Subtracts right hand operand from

left hand operand

A - B gives -10

* Multiplication: Multiplies values on either side of

the operator

A * B gives 200

/ Division: Divides left hand operand by right hand

operand

B / A gives 2

+ Unary Plus: This has no impact on the variable

value.

+B gives 20

- Unary Minus: This creates a negative value of the

given variable.

-B gives -20

7. EUPHORIA OPERATORS

Euphoria

25

The Relational Operators

There are following relational operators supported by Euphoria language. Assume

variable A holds 10 and variable B holds 20 then:

Operator Description Example

= Checks if the value of two operands are equal

or not, if yes then condition becomes true.

(A = B) is not true.

!= Checks if the value of two operands are equal

or not, if values are not equal then condition

becomes true.

(A != B) is true.

> Checks if the value of left operand is greater

than the value of right operand, if yes then

condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than

the value of right operand, if yes then

condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than

or equal to the value of right operand, if yes

then condition becomes true.

(A <= B) is true.

The Logical Operators

The following table lists the logical operators. Assume boolean variables A holds 1

and variable B holds 0 then:

Operator Description Example

Euphoria

26

and Called Logical AND operator. If both the

operands are non zero then then condition

becomes true.

(A and B) is false.

or Called Logical OR Operator. If any of the two

operands are non zero then then condition

becomes true.

(A or B) is true.

xor Called Logical XOR Operator. Condition is true

if one of them is true, if both operands are

true or false then condition becomes false.

(A xor B) is true.

not Called Logical NOT Operator which negates

the result. Using this operator, true becomes

false and false becomes true

not(B) is true.

You can also apply these operators to numbers other than 1 or 0. The convention is:

zero means false and non-zero means true.

The Assignment Operators

There are following assignment operators supported by Euphoria language:

Operator Description Example

= Simple assignment operator, Assigns

values from right side operands to left side

operand

C = A + B assigns value of

A + B into C

+= Add AND assignment operator, It adds

right operand to the left operand and

assign the result to left operand

C += A is equivalent to

C = C + A

-= Subtract AND assignment operator, It

subtracts right operand from the left

operand and assign the result to left

operand

C -= A is equivalent to

C = C - A

Euphoria

27

*= Multiply AND assignment operator, It

multiplies right operand with the left

operand and assign the result to left

operand

C *= A is equivalent to

C = C * A

/= Divide AND assignment operator, It divides

left operand with the right operand and

assign the result to left operand

C /= A is equivalent to

C = C / A

&= Concatenation operator C &= {2} is same as

C = {C} & {2}

Note: The equals symbol '=' used in an assignment statement is not an operator, it

is just a part of the syntax.

Miscellaneous Operators

There are few other operators supported by Euphoria Language.

The '&' Operator

Any two objects may be concatenated using “&” operator. The result is a sequence

with a length equal to the sum of the lengths of the concatenated objects.

For example:

#!/home/euphoria-4.0b2/bin/eui

sequence a, b, c

a = {1, 2, 3}

b = {4}

c = {1, 2, 3} & {4}

printf(1, "Value of c[1] %d\n", c[1])

printf(1, "Value of c[2] %d\n", c[2])

printf(1, "Value of c[3] %d\n", c[3])

Euphoria

28

printf(1, "Value of c[4] %d\n", c[4])

This produces the following result:

Value of c[1] 1

Value of c[2] 2

Value of c[3] 3

Value of c[4] 4

Precedence of Euphoria Operators

Operator precedence determines the grouping of terms in an expression. This affects

how an expression is evaluated. Certain operators have higher precedence than

others; for example, the multiplication operator has higher precedence than the

addition operator.

For example, x = 7 + 3 * 2

Here, x is assigned 13, not 20 because operator * has higher precedence than +.

Hence it first starts with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with

the lowest appear at the bottom. Within an expression, higher precedence operators

is evaluated first.

Category Operator Associativity

Postfix function/type

calls

Unary + - ! not Right to left

Multiplicative * / Left to right

Additive + - Left to right

Concatenation & Left to right

Euphoria

29

Relational > >= < <= Left to right

Equality = != Left to right

Logical AND and Left to right

Logical OR or Left to right

Logical XOR xor Left to right

Comma , Left to right

Euphoria

30

Branching is the most important aspect of any programming language. While writing

your program, you may encounter a situation when you have to take a decision or

you have to select one option out of the given many options.

Following diagram shows a simple scenario where a program needs to take one of

the two paths based on the given condition.

Euphoria provides following three types of decision making (branching or conditional)

statements −

 if statement

 switch statement

 ifdef statement

Let us see the statements in detail:

The if Statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax
The syntax of if statement is:

8. EUPHORIA BRANCHING

http://localhost/euphoria/euphoria_if_statement.htm
http://localhost/euphoria/euphoria_switch_statement.htm
http://localhost/euphoria/euphoria_ifdef_statement.htm

Euphoria

31

if expression then

 -- Statements will execute if the expression is true

end if

If the boolean expression evaluates to true then the block of code inside the if

statement is executed. If it evaluates to false, then the first set of code after the end

of the if statement is executed.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

integer b = 20

if (a + b) < 40 then

 printf(1, "%s\n", {"This is true if statement!"})

end if

if (a + b) > 40 then

 printf(1, "%s\n", {"This is not true if statement!"})

end if

This produces the following result:

This is true if statement!

The if...else Statement

An if statement can be followed by an optional else statement, which executes when

the boolean expression is false.

Syntax
The syntax of if...else statement is as follows:

Euphoria

32

if expression then

 -- Statements will execute if the expression is true

else

 -- Statements will execute if the expression is false

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

integer b = 20

if (a + b) < 40 then

 printf(1, "%s\n", {"This is inside if statement!"})

else

 printf(1, "%s\n", {"This is inside else statement!"})

end if

This produces the following result:

This is inside if statement!

The if...elsif...else Statement

An if statement can be followed by any number of optional elsif...else statement,

which is very useful to test various conditions using single if...elsif statement.

Syntax
The syntax of if...elsif...else statement is as follows:

if expression1 then

 -- Executes when the Boolean expression 1 is true

Euphoria

33

elsif expression2 then

 -- Executes when the Boolean expression 2 is true

elsif expression3 then

 -- Executes when the Boolean expression 3 is true

else

 -- Executes when none of the above condition is true.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

integer b = 20

if (a + b) = 40 then

 printf(1, "Value of (a + b) is %d\n", a + b)

elsif (a + b) = 45 then

 printf(1, "Value of (a + b) is %d\n", a + b)

elsif (a + b) = 30 then

 printf(1, "Value of (a + b) is %d\n", a + b)

else

 printf(1, "Value of (a + b) is %d\n", 0)

end if

This produces the following result:

Value of (a + b) is 30

Euphoria

34

The if...label...then Statement

An if statement can have a label clause just before the first then keyword. Note that

an elsif clause cannot have a label.

An if…lable is used just to name the if block and label names must be double quoted

constant strings having single or multiple words. The label keyword is a case sensitive

and should be written as label.

Syntax

The syntax of label clause is as follows:

if expression label "Label Name" then

 -- Executes when the boolean expression is true

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

integer b = 20

if (a + b) = 40 label "First IF Block" then

 printf(1, "Value of (a + b) is %d\n", a + b)

elsif (a + b) = 45 then

 printf(1, "Value of (a + b) is %d\n", a + b)

elsif (a + b) = 30 then

 printf(1, "Value of (a + b) is %d\n", a + b)

else

 printf(1, "Value of (a + b) is %d\n", 0)

end if

This produces the following result:

Euphoria

35

Value of (a + b) is 30

Nested if...else Statement

It is always legal to nest if…else statements. This means you can have one if-else

statement within another if-else statements.

Syntax
The syntax of nested if...else is as follows:

if expression1 then

 -- Executes when the boolean expression1 is true

 if expression2 then

 -- Executes when the boolean expression2 is true

 end if

end if

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

integer b = 20

integer c = 0

if c = 0 then

 printf(1, "Value of c is equal to %d\n", 0)

 if (a + b) = 30 then

 printf(1, "Value of (a + b) is equal to %d\n", 30)

 else

 printf(1, "Value of (a + b) is equal to %d\n", a + b)

Euphoria

36

 end if

else

 printf(1, "Value of c is equal to %d\n", c)

end if

This produces the following result:

Value of c is equal to 0

Value of (a + b) is equal to 30

The switch Statement

The switch statement is used to run a specific set of statements, depending on the

value of an expression. It often replaces a set of if…elsif statements giving you more

control and readability of your program.

Syntax

The syntax of simple switch statement is as follows:

switch expression do

 case <val> [, <val-1>....] then

 -- Executes when the expression matches one of the values

 case <val> [, <val-1>....] then

 -- Executes when the expression matches one of the values

 case else

 -- Executes when the expression does not matches any case.

end if

The <val> in a case must be either an atom, literal string, constant or enum. Multiple

values for a single case can be specified by separating the values by commas. By

default, control flows to the end of the switch block when the next case is

encountered.

Euphoria

37

Example

#!/home/euphoria-4.0b2/bin/eui

atom marks = 'C'

switch marks do

 case 'A' then

 puts(1, "Excellent!\n")

 case 'B', 'C' then

 puts(1, "Well done!\n")

 case 'D' then

 puts(1, "You passed!\n")

 case 'F' then

 puts(1, "Better try again!\n")

 case else

 puts(1, "Invalid grade!\n")

end switch

This produces the following result:

Well done!

The switch...with fallthru Statement

The case statement of a switch is executed when it matches with the given

expression value and by default it comes out. By default, control flows to the end of

the switch block when the next case is encountered.

The default for a particular switch block can be changed so that control passes to the

next executable statement whenever a new case is encountered by using with

fallthru in the switch statement:

Euphoria

38

Syntax
The syntax of simple switch...with fallthru statement is as follows:

switch expression with fallthru do

 case <val> [, <val-1>....] then

 -- Executes when the expression matches one of the values

 break -- optional to come out of the switch from this point.

 case <val> [, <val-1>....] then

 -- Executes when the expression matches one of the values

 break -- Optional to come out of the switch from this point.

 case else

 -- Executes when the expression does not matches any case.

 break -- Optional to come out of the switch from this point.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

atom marks = 'C'

switch marks with fallthru do

 case 'A' then

 puts(1, "Excellent!\n")

 case 'B', 'C' then

 puts(1, "Well done!\n")

 case 'D' then

 puts(1, "You passed!\n")

Euphoria

39

 case 'F' then

 puts(1, "Better try again!\n")

 case else

 puts(1, "Invalid grade!\n")

end switch

This produces the following result:

Well done!

You passed!

Better try again!

Invalid grade!

You can use optional break statement to come out from a point inside a switch

statement as follows:

#!/home/euphoria-4.0b2/bin/eui

atom marks = 'C'

switch marks with fallthru do

 case 'A' then

 puts(1, "Excellent!\n")

 break

 case 'B', 'C' then

 puts(1, "Well done!\n")

 break

 case 'D' then

 puts(1, "You passed!\n")

 break

Euphoria

40

 case 'F' then

 puts(1, "Better try again!\n")

 break

 case else

 puts(1, "Invalid grade!\n")

 break

end switch

This produces the following result:

Well done!

The switch....label Statement

The switch statement can have an optional label to name the switch block. This

name can be used in nested switch break statements to break out of an enclosing

switch rather than just the owning switch.

A switch label is used just to name the block and label names must be double quoted

constant strings having single or multiple words. The label keyword is a case sensitive

and should be written as label.

Syntax
The syntax of simple switch...label statement is as follows:

switch expression label "Label Name" do

 case <val> [, <val-1>....] then

 -- Executes when the expression matches one of the values

 break "LEBEL NAME"

 case <val> [, <val-1>....] then

 -- Executes when the expression matches one of the values

 break "LEBEL NAME"

 case else

Euphoria

41

 -- Executes when the expression does not matches any case.

 break "LEBEL NAME"

end if

Example

#!/home/euphoria-4.0b2/bin/eui

atom marks = 'C'

atom scale = 'L'

switch marks label "MARKS" do

 case 'A' then

 puts(1, "Excellent!\n")

 case 'B', 'C' then

 puts(1, "Well done!\n")

 switch scale label "SCALE" do

 case 'U' then

 puts(1, "Upper scale!\n")

 break "MARKS"

 case 'L' then

 puts(1, "Lower scale!\n")

 break "MARKS"

 case else

 puts(1, "Invalid scale!\n")

 break "MARKS"

 end switch

 case 'D' then

Euphoria

42

 puts(1, "You passed!\n")

 case 'F' then

 puts(1, "Better try again!\n")

 case else

 puts(1, "Invalid grade!\n")

end switch

This produces the following result:

Well done!

Lower scale!

Note: If you are not using a with fallthru statement then you do not need to use a

label because switch statement would come out automatically.

The ifdef Statement

The ifdef statement is executed at parse time not runtime. This allows you to change

the way your program operates in a very efficient manner.

Since the ifdef statement works at parse time, runtime values cannot be checked,

instead special definitions can be set or unset at parse time as well.

Syntax
The syntax of ifdef statement is as follows:

ifdef macro then

 -- Statements will execute if the macro is defined.

end if

If the boolean expression evaluates to true then the block of code inside the if

statement is executed. If not, then the first set of code after the end of the ifdef

statement will be executed.

The ifdef checks the macros defined by using with define keywords. There are plenty

of macros defined like WIN32_CONSOLE, WIN32, or LINUX. You can define your own

macros as follows:

Euphoria

43

with define MY_WORD -- defines

You can un-define an already defined word as follows:

without define OTHER_WORD -- undefines

Example

#!/home/euphoria-4.0b2/bin/eui

with define DEBUG

integer a = 10

integer b = 20

ifdef DEBUG then

 puts(1, "Hello, I am a debug message one\n")

end ifdef

if (a + b) < 40 then

 printf(1, "%s\n", {"This is true if statement!"})

end if

if (a + b) > 40 then

 printf(1, "%s\n", {"This is not true if statement!"})

end if

This produces the following result:

Hello, I am a debug message one

This is true if statement!

Euphoria

44

The ifdef...elsedef Statement

You can take one action if given macro is defined otherwise you can take another

action in case given macro is not defined.

Syntax
The syntax of ifdef...elsedef statement is as follows:

ifdef macro then

 -- Statements will execute if the macro is defined.

elsedef

 -- Statements will execute if the macro is not defined.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

ifdef WIN32 then

 puts(1, "This is windows 32 platform\n")

elsedef

 puts(1, "This is not windows 32 platform\n")

end ifdef

When you run this program on Linux machine, it produces the following result:

This is not windows 32 platform

The ifdef...elsifdef Statement

You can check multiple macros using ifdef...elsifdef statement.

Syntax
The syntax of ifdef...elsifdef statement is as follows:

Euphoria

45

ifdef macro1 then

 -- Statements will execute if the macro1 is defined.

elsifdef macro2 then

 -- Statements will execute if the macro2 is defined.

elsifdef macro3 then

 -- Statements will execute if the macro3 is defined.

.......................

elsedef

 -- Statements will execute if the macro is not defined.

end if

Example

#!/home/euphoria-4.0b2/bin/eui

ifdef WIN32 then

 puts(1, "This is windows 32 platform\n")

elsifdef LINUX then

 puts(1, "This is LINUX platform\n")

elsedef

 puts(1, "This is neither Unix nor Windows\n")

end ifdef

When you run this program on Linux machine, it produces the following result:

This is LINUX platform

All the above statements have various forms which provide you a flexibility and ease

of use based on different situations.

Euphoria

46

Looping is yet another most important aspect of any programming language. While

writing your program, you may encounter a situation when you have to execute same

statement many times and sometime may be infinite number of times.

There are several ways to specify for how long the process should go on, and how to

stop or otherwise alter it. An iterative block may be informally called a loop, and each

execution of code in a loop is called an iteration of the loop.

The following diagram shows a simple logical flow of a loop:

Euphoria provides following three types of loop statements:

 while statement

 loop until statement

 for statement

All the above statements provide you flexibility and ease of use based on different

situations. Let us see them in detail one by one:

9. EUPHORIA LOOPS

http://localhost/euphoria/euphoria_while_statement.htm
http://localhost/euphoria/euphoria_until_statement.htm
http://localhost/euphoria/euphoria_for_statement.htm

Euphoria

47

While Statement

A while loop is a control structure that allows you to repeat a task for a certain number

of times.

Syntax

The syntax of a while loop is as follows:

while expression do

 -- Statements executed if expression returns true

end while

When executing, if the expression results in true then the actions inside the loop is

executed. This continues as long as the expression result is true.

The key point of the while loop is that, the loop might not ever run. When the

expression is tested and the result is false, the loop body is skipped and the first

statement after the while loop is executed.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

while a < 20 do

 printf(1, "value of a : %d\n", a)

 a = a + 1

end while

This produces the following result:

value of a : 10

value of a : 11

value of a : 12

value of a : 13

Euphoria

48

value of a : 14

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

The while....with entry Statement

It is often the case that the first iteration of a loop is somehow special. Some things

have to be done before the loop starts. They are done before the statement starting

the loop.

The with entry statement serves the purpose very well. You need to use this

statement with while loop and just add the entry keyword at the point you wish the

first iteration starts.

Syntax

The syntax of a while loop with entry is as follows:

while expression with entry do

 -- Statements executed if expression returns true

entry

 -- Initialisation statements.

end while

Before executing the expression, it executes initialization statements and then it

starts as a normal while loop. Later, these initialization statements become part of

the loop body.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

Euphoria

49

while a < 20 with entry do

 printf(1, "value of a : %d\n", a)

 a = a + 1

entry

 a = a + 2

end while

This produces the following result:

value of a : 12

value of a : 15

value of a : 18

The while....label Statement

A while loop can have a label clause just before the first do keyword. You can keep

label clause before or after enter clause.

A while loop label is used just to name the loop block and label names must be double

quoted constant strings having single or multiple words. The label keyword is a case

sensitive and should be written as label.

Syntax

The syntax of a while loop with label clause is as follows:

while expression label "Label Name" do

 -- Statements executed if expression returns true

end while

The labels are very useful when you use nested while loops. You can use continue

or exit loop control statements with label names to control the flow of loops.

Example

#!/home/euphoria-4.0b2/bin/eui

Euphoria

50

integer a = 10

integer b = 20

while a < 20 label "OUTER" do

 printf(1, "value of a : %d\n", a)

 a = a + 1

 while b < 30 label "INNER" do

 printf(1, "value of b : %d\n", b)

 b = b + 1

 if b > 25 then

 continue "OUTER" -- go to start of OUTER loop

 end if

 end while

end while

This produces the following result:

value of a : 10

value of b : 20

value of b : 21

value of b : 22

value of b : 23

value of b : 24

value of b : 25

value of a : 11

value of b : 26

value of a : 12

Euphoria

51

value of b : 27

value of a : 13

value of b : 28

value of a : 14

value of b : 29

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

A loop...until loop is similar to a while loop, except that a loop...until loop is

guaranteed to execute at least one time.

Syntax

The syntax of a loop...until is as follows:

loop do

 -- Statements to be executed.

until expression

Notice that the expression appears at the end of the loop, hence the statements in

the loop execute once before the expression's value is tested.

If the expression returns true, the flow of control jumps back up to do, and the

statements in the loop execute again. This process repeats until the expression is

false.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

Euphoria

52

loop do

 printf(1, "value of a : %d\n", a)

 a = a + 1

until a < 20

This produces the following result:

value of a : 10

value of a : 11

value of a : 12

value of a : 13

value of a : 14

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

The loop....with entry Statement

It is often the case that the first iteration of a loop is somehow special. Some things

have to be done before the loop starts. They are done before the statement starting

the loop.

The with entry statement serves the purpose very well. You need to use this

statement with loop...until and just add the entry keyword at the point you wish the

first iteration starts.

Syntax

The syntax of a loop...until loop with entry is as follows:

loop with entry do

 -- Statements to be executed.

entry

Euphoria

53

 -- Initialisation statements.

until expression

Before executing the expression, it executes initialization statements and then it

starts as a normal loop. Later, these initialization statements become part of loop

body.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

loop with entry do

 printf(1, "value of a : %d\n", a)

 a = a + 1

entry

 a = a + 2

until a > 20

This produces the following result:

value of a : 12

value of a : 15

value of a : 18

The loop....label Statement

A loop...until loop can have a label clause just before the first do keyword. You can

keep label clause before or after enter clause.

This label is used just to name the loop block and label names must be double quoted

constant strings having single or multiple words. The label keyword is a case sensitive

and should be written as label.

Euphoria

54

Syntax

The syntax of a loop...until with label clause is as follows:

loop label "Label Name" do

 -- Statements to be executed.

until expression

The labels are very useful when you use nested loops. You can use continue or

exit loop control statements with label names to control the flow of loops.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 10

integer b = 20

loop label "OUTER" do

 printf(1, "value of a : %d\n", a)

 a = a + 1

 loop label "INNER" do

 printf(1, "value of b : %d\n", b)

 b = b + 1

 if b > 25 then

 continue "OUTER" -- go to start of OUTER loop

 end if

 until b > 30

until a > 20

This produces the following result:

value of a : 10

Euphoria

55

value of b : 20

value of b : 21

value of b : 22

value of b : 23

value of b : 24

value of b : 25

value of a : 11

value of b : 26

value of a : 12

value of b : 27

value of a : 13

value of b : 28

value of a : 14

value of b : 29

value of a : 15

value of a : 16

value of a : 17

value of a : 18

value of a : 19

Note: The above example should work as explained, but looks like Euphoria

interpreter has some problem and it is working as expected, may be it would be fixed

in future versions of Euphoria.

A for loop is a repetition control structure that allows you to efficiently write a loop

that needs to execute a specific number of times.

A for statement sets up a special loop that has its own loop variable. The loop variable

starts with the specified initial value and increments or decrements it to the specified

final value.

A for loop is useful when you know the exact number of times a task is required to

be repeated.

Euphoria

56

Syntax

The syntax of a for loop is as follows:

for "initial value" to "last value" by "inremental value" do

 -- Statements to be executed.

end for

Here, you initialize the value of a variable and then body of the loop is executed.

After every iteration, variable value is increased by the given incremental value. The

last value of the variable is checked and if it is reached, then loop is terminated.

The initial value, last value, and increment must all be atoms. If no increment is

specified then +1 is assumed.

The for loop does not support with entry statement.

Example

#!/home/euphoria-4.0b2/bin/eui

for a = 1 to 6 do

 printf(1, "value of a %d\n", a)

end for

This produces the following result:

value of a 1

value of a 2

value of a 3

value of a 4

value of a 5

value of a 6

The loop variable is declared automatically. It exists until the end of the loop. The

variable has no value outside of the loop and is not even declared. If you need its

final value, you need to copy it into another variable before leaving the loop.

Euphoria

57

Here is one more example with incremental value:

#!/home/euphoria-4.0b2/bin/eui

for a = 1.0 to 6.0 by 0.5 do

 printf(1, "value of a %f\n", a)

end for

This produces the following result:

value of a 1.000000

value of a 1.500000

value of a 2.000000

value of a 2.500000

value of a 3.000000

value of a 3.500000

value of a 4.000000

value of a 4.500000

value of a 5.000000

value of a 5.500000

value of a 6.000000

Euphoria

58

Program execution flow refers to the order in which program statements get

executed. By default the statements get executed one after another.

However; many times the order of execution needs to be altered from the default

order, to get the task done.

Euphoria has a number of flow control statements that you can use to arrange the

execution order of statements.

The exit Statement

Exiting a loop is done with the keyword exit. This causes flow to immediately leave

the current loop and recommence with the first statement after the end of the loop.

Syntax

The syntax of an exit statement is as follows:

exit ["Label Name"] [Number]

The exit statement terminates the latest and innermost loop until an optional label

name or number is specified.

A special form of exit N is exit 0. This leaves all levels of loop, regardless of the

depth. Control continues after the outermost loop block. Likewise, exit -1 exits the

second outermost loop, and so on.

Example

#!/home/euphoria-4.0b2/bin/eui

integer b

for a = 1 to 16 do

 printf(1, "value of a %d\n", a)

 if a = 10 then

10. EUPHORIA FLOW CONTROL

Euphoria

59

 b = a

 exit

 end if

end for

printf(1, "value of b %d\n", b)

This produces the following result:

value of a 1

value of a 2

value of a 3

value of a 4

value of a 5

value of a 6

value of a 7

value of a 8

value of a 9

value of a 10

value of b 10

The break Statement

The break statement works exactly like the exit statement, but applies to if

statements or switch statements rather than to loop statements of any kind.

Syntax

The syntax of break statement is as follows:

break ["Label Name"] [Number]

The break statement terminates the latest and innermost if or switch block until an

optional label name or number is specified.

Euphoria

60

A special form of break N is break 0. This leaves the outer most if or switch block,

regardless of the depth. Control continues after the outermost block. Likewise, break

-1 breaks the second outermost if or switch block, and so on.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a, b

sequence s = {'E','u', 'p'}

if s[1] = 'E' then

 a = 3

 if s[2] = 'u' then

 b = 1

 if s[3] = 'p' then

 break 0 -- leave topmost if block

 end if

 a = 2

 else

 b = 4

 end if

else

 a = 0

 b = 0

end if

printf(1, "value of a %d\n", a)

printf(1, "value of b %d\n", b)

This produces the following result:

Euphoria

61

value of a 3

value of b 1

The continue Statement

The continue statement continues execution of the loop it applies to by going to the

next iteration and skipping the rest of an iteration.

Going to the next iteration means testing a condition variable index and checking

whether it is still within bounds.

Syntax

The syntax of continue statement is as follows:

continue ["Label Name"] [Number]

The continue statement would re-iterate the latest and inner most loop until an

optional label name or number is specified.

A special form of continue N is continue 0. This re-iterate the outer most loop,

regardless of the depth. Likewise, continue -1 starts from the second outermost loop,

and so on.

Example

#!/home/euphoria-4.0b2/bin/eui

for a = 3 to 6 do

 printf(1, "value of a %d\n", a)

 if a = 4 then

 puts(1,"(2)\n")

 continue

 end if

 printf(1, "value of a %d\n", a*a)

end for

This would produce following result:

Euphoria

62

value of a 3

value of a 9

value of a 4

(2)

value of a 5

value of a 25

value of a 6

value of a 36

The retry Statement

The retry statement continues execution of the loop it applies to by going to the next

iteration and skipping the rest of an iteration.

Syntax

The syntax of retry statement is as follows:

retry ["Label Name"] [Number]

The retry statement retries executing the current iteration of the loop it applies to.

The statement branches to the first statement of the designated loop neither testing

anything nor incrementing the for loop index.

A special form of retry N is retry 0. This retries executing the outer most loop,

regardless of the depth. Likewise, retry -1 retries the second outermost loop, and so

on.

Normally, a sub-block which contains a retry statement also contains another flow

control keyword like exit, continue, or break. Otherwise, the iteration would be

endlessly executed.

Example

#!/home/euphoria-4.0b2/bin/eui

integer errors = 0

integer files_to_open = 10

Euphoria

63

for i = 1 to length(files_to_open) do

 fh = open(files_to_open[i], "rb")

 if fh = -1 then

 if errors > 5 then

 exit

 else

 errors += 1

 retry

 end if

 end if

 file_handles[i] = fh

end for

Since retry does not change the value of i and tries again opening the same file, there

has to be a way to break from the loop, which the exit statement provides.

The goto Statement

The goto statement instructs the computer to resume code execution at a labeled

place.

The place to resume execution is called the target of the statement. It is restricted

to lie in the current routine, or the current file if outside any routine.

Syntax

The syntax of goto statement is as follows:

goto "Label Name"

The target of a goto statement can be any accessible label statement:

label "Label Name"

Euphoria

64

Label names must be double quoted constant strings. Characters that are illegal in

Euphoria identifiers may appear in a label name, since it is a regular string.

Example

#!/home/euphoria-4.0b2/bin/eui

integer a = 0

label "FIRST"

printf(1, "value of a %d\n", a)

a += 10

if a < 50 then

 goto "FIRST"

end if

printf(1, "Final value of a %d\n", a)

This produces the following result:

value of a 0

value of a 10

value of a 20

value of a 30

value of a 40

Final value of a 50

Euphoria

65

When a condition is tested by if, elsif, until, or while using and or or operators, a

short-circuit evaluation is used. For example:

if a < 0 and b > 0 then

 -- block of code

end if

If a < 0 is false, then Euphoria does not bother to test if b is greater than 0. It knows

that the overall result is false regardless. Similarly:

if a < 0 or b > 0 then

 -- block of code

end if

if a < 0 is true, then Euphoria immediately decides that the result true, without testing

the value of b, since the result of this test is irrelevant.

In General, whenever you have a condition of the following form:

A and B

Where A and B can be any two expressions, Euphoria takes a short-cut when A is

false and immediately makes the overall result false, without even looking at

expression B.

Similarly, whenever you have a condition of the following form:

A or B

Where A is true, Euphoria skips the evaluation of expression B, and declares the

result to be true.

Short-circuit evaluation of and and or takes place for if, elsif, until, and while

conditions only. It is not used in other contexts. For example:

x = 1 or {1,2,3,4,5} -- x should be set to {1,1,1,1,1}

11. SHORT CIRCUIT EVALUATION

Euphoria

66

If short-circuiting were used here, you would set x to 1, and not even look at

{1,2,3,4,5}, which would be wrong.

Thus, short-circuiting can be used in if, elsif, until, or while conditions, because you

need to only care if the result is true or false, and conditions are required to produce

an atom as a result.

Euphoria

67

A sequence is represented by a list of objects in brace brackets { }, separated by

commas. A sequence can contain both atoms and other sequences. For example:

{2, 3, 5, 7, 11, 13, 17, 19}

{1, 2, {3, 3, 3}, 4, {5, {6}}}

{{"Zara", "Ayan"}, 52389, 97.25}

{} -- the 0-element sequence

A single element of a sequence may be selected by giving the element number in

square brackets. Element numbers start at 1.

For example, if x contains {5, 7.2, 9, 0.5, 13} then x[2] is 7.2.

Suppose x[2] contains {11,22,33}, Now if you ask for x[2] you get {11,22,33} and

if you ask for x[2][3], you get the atom 33.

Example

#!/home/euphoria-4.0b2/bin/eui

sequence x

x = {1, 2, 3, 4}

for a = 1 to length(x) do

 printf(1, "value of x[%d] = %d\n", {a, x[a]})

end for

Here, length() is the built-in function which returns length of the sequence. The above

example produces the following result:

value of x[1] = 1

value of x[2] = 2

12. EUPHORIA SEQUENCES

Euphoria

68

value of x[3] = 3

value of x[4] = 4

Character String

A character string is just a sequence of characters. It may be entered in one of the

two ways:

(a) Using Double Quotes

"ABCDEFG"

(b) Using Raw String Notation

-- Using back-quotes

`ABCDEFG`

or

-- Using three double-quotes

"""ABCDEFG"""

You can try the following example to understand the concept:

#!/home/euphoria-4.0b2/bin/eui

sequence x

x = "ABCD"

for a = 1 to length(x) do

 printf(1, "value of x[%d] = %s\n", {a, x[a]})

end for

This produces the following result:

Euphoria

69

value of x[1] = A

value of x[2] = B

value of x[3] = C

value of x[4] = D

String Arrays

An array of strings can be implemented using Sequences as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence x = {"Hello", "World", "Euphoria", "", "Last One"}

for a = 1 to length(x) do

 printf(1, "value of x[%d] = %s\n", {a, x[a]})

end for

This produces the following result:

value of x[1] = Hello

value of x[2] = World

value of x[3] = Euphoria

value of x[4] =

value of x[5] = Last One

Euphoria Structures

A structure can be implemented using Sequences as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence employee = {

Euphoria

70

 {"John","Smith"},

 45000,

 27,

 185.5

 }

printf(1, "First Name = %s, Last Name = %s\n",

 {employee[1][1],employee[1][2]})

This produces the following result:

First Name = John, Last Name = Smith

There are various operations which can be performed directly on sequences. Let us

see them in detail:

Urinary Operation

When applied to a sequence, a unary operator is actually applied to each element in

the sequence to yield a sequence of results of the same length.

#!/home/euphoria-4.0b2/bin/eui

sequence x

x = -{1, 2, 3, 4}

for a = 1 to length(x) do

 printf(1, "value of x[%d] = %d\n", {a, x[a]})

end for

This produces the following result:

value of x[1] = -1

Euphoria

71

value of x[2] = -2

value of x[3] = -3

value of x[4] = -4

Arithmetic Operations

Almost all arithmetic operations can be performed on sequences as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence x, y, a, b, c

x = {1, 2, 3}

y = {10, 20, 30}

a = x + y

puts(1, "Value of a = {")

for i = 1 to length(a) do

 printf(1, "%d,", a[i])

end for

puts(1, "}\n")

b = x - y

puts(1, "Value of b = {")

for i = 1 to length(a) do

 printf(1, "%d,", b[i])

end for

puts(1, "}\n")

c = x * 3

Euphoria

72

puts(1, "Value of c = {")

for i = 1 to length(c) do

 printf(1, "%d,", c[i])

end for

puts(1, "}\n")

This produces the following result:

Value of a = {11,22,33,}

Value of b = {-9,-18,-27,}

Value of c = {3,6,9,}

Command Line Options

A user can pass command line options to a Euphoria script and it can be accessed as

a sequence using command_line() function as follows:

#!/home/euphoria-4.0b2/bin/eui

sequence x

x = command_line()

printf(1, "Interpeter Name: %s\n", {x[1]})

printf(1, "Script Name: %s\n", {x[2]})

printf(1, "First Argument: %s\n", {x[3]})

printf(1, "Second Argument: %s\n", {x[4]})

Euphoria

73

Here printf() is Euphoria's built-in function. Now if you run this script as follows:

$eui test.ex "one" "two"

This produces the following result:

Interpeter Name: /home/euphoria-4.0b2/bin/eui

Script Name: test.ex

First Argument: one

Second Argument: two

Euphoria

74

Euphoria has a library routine that returns the date and time to your program.

The date() Method

The date() method returns a sequence value composed of eight atom elements. The

following example explains it in detail:

#!/home/euphoria-4.0b2/bin/eui

integer curr_year, curr_day, curr_day_of_year, curr_hour,

 curr_minute, curr_second

sequence system_date, word_week, word_month, notation,

 curr_day_of_week, curr_month

 word_week = {"Sunday",

 "Monday",

 "Tuesday",

 "Wednesday",

 "Thursday",

 "Friday",

 "Saturday"}

 word_month = {"January", "February",

 "March", "April", "May",

 "June", "July", "August",

 "September", "October",

 "November", "December"}

-- Get current system date.

13. EUPHORIA DATE AND TIME

Euphoria

75

system_date = date()

-- Now take individual elements

curr_year = system_date[1] + 1900

curr_month = word_month[system_date[2]]

curr_day = system_date[3]

curr_hour = system_date[4]

curr_minute = system_date[5]

curr_second = system_date[6]

curr_day_of_week = word_week[system_date[7]]

curr_day_of_year = system_date[8]

if curr_hour >= 12 then

 notation = "p.m."

else

 notation = "a.m."

end if

if curr_hour > 12 then

 curr_hour = curr_hour - 12

end if

if curr_hour = 0 then

 curr_hour = 12

end if

puts(1, "\nHello Euphoria!\n\n")

printf(1, "Today is %s, %s %d, %d.\n",

Euphoria

76

 {curr_day_of_week, curr_month,

 curr_day, curr_year})

printf(1, "The time is %.2d:%.2d:%.2d %s\n",

 {curr_hour, curr_minute,

 curr_second, notation})

printf(1, "It is %3d days into the current year.\n",

 {curr_day_of_year})

This produces the following result on your standard screen:

Hello Euphoria!

Today is Friday, January 22, 2010.

The time is 02:54:58 p.m.

It is 22 days into the current year.

The time() Method

The time() method returns an atom value, representing the number of seconds

elapsed since a fixed point in time. The following example explains it in detail:

#!/home/euphoria-4.0b2/bin/eui

constant ITERATIONS = 100000000

integer p

atom t0, t1, loop_overhead

t0 = time()

Euphoria

77

for i = 1 to ITERATIONS do

 -- time an empty loop

end for

loop_overhead = time() - t0

printf(1, "Loop overhead:%d\n", loop_overhead)

t0 = time()

for i = 1 to ITERATIONS do

 p = power(2, 20)

end for

t1 = (time() - (t0 + loop_overhead))/ITERATIONS

printf(1, "Time (in seconds) for one call to power:%d\n", t1)

This produces the following result:

Loop overhead:1

Time (in seconds) for one call to power:0

Date & Time Related Methods

Euphoria provides a list of methods which helps you in manipulating date and time.

These methods are listed in Euphoria Library Routines.

http://localhost/euphoria/euphoria_library_routines.htm

Euphoria

78

A procedure is a group of reusable code which can be called from anywhere in your

program. This eliminates the need of writing same code again and again. This helps

programmers to write modular code.

Like any other advance programming language, Euphoria also supports all the

features necessary to write modular code using procedures.

You must have seen procedures like printf() and length() in previous chapters. We

are using these procedure again and again but they have been written in core

Euphoria only once.

Euphoria allows you to write your own procedures as well. This section explains how

to write your own procedure in Euphoria.

Procedure Definition

Before you use a procedure, you need to define it. The most common way to define

a procedure in Euphoria is by using the procedure keyword, followed by a unique

procedure name, a list of parameters (that might be empty), and a statement block

which ends with end procedure statement. The basic syntax is as shown below:

procedure procedurename(parameter-list)

 statements

end procedure

Example

A simple procedure called sayHello that takes no parameters is defined here −

procedure sayHello()

 puts(1, "Hello there")

end procedure

14. EUPHORIA PROCEDURES

Euphoria

79

Calling a Procedure

To invoke a procedure somewhere later in the script, you simply need to write the

name of that procedure as follows:

#!/home/euphoria-4.0b2/bin/eui

procedure sayHello()

 puts(1, "Hello there")

end procedure

-- Call above defined procedure.

sayHello()

This produces the following result:

Hello there

Procedure Parameters

Till now you have seen procedure without a parameter. But there is a facility to pass

different parameters while calling a procedure. These passed parameters can be

captured inside the procedure and any manipulation can be done over those

parameters.

A procedure can take multiple parameters separated by comma.

Example
Let us do a bit modification in our sayHello procedure. This time it takes two

parameters:

#!/home/euphoria-4.0b2/bin/eui

procedure sayHello(sequence name,atom age)

 printf(1, "%s is %d years old.", {name, age})

end procedure

Euphoria

80

-- Call above defined procedure.

sayHello("zara", 8)

This produces the following result:

zara is 8 years old.

Euphoria

81

Euphoria functions are just like procedures, but they return a value, and can be used

in an expression. This chapter explains how to write your own functions in Euphoria.

Function Definition

Before we use a function we need to define it. The most common way to define a

function in Euphoria is by using the function keyword, followed by a unique function

name, a list of parameters (that might be empty), and a statement block which ends

withend function statement. The basic syntax is shown below:

function functionname(parameter-list)

 statements

 return [Euphoria Object]

end function

Example

A simple function called sayHello that takes no parameters is defined here:

function sayHello()

 puts(1, "Hello there")

 return 1

end function

Calling a Function

To invoke a function somewhere later in the script, you would simple need to write

the name of that function as follows:

15. EUPHORIA FUNCTIONS

Euphoria

82

#!/home/euphoria-4.0b2/bin/eui

function sayHello()

 puts(1, "Hello there")

 return 1

end function

-- Call above defined function.

sayHello()

This produces the following result:

Hello there

Function Parameters

Till now we have seen function without a parameters. But there is a facility to pass

different parameters while calling a function. These passed parameters can be

captured inside the function and any manipulation can be done over those

parameters.

A function can take multiple parameters separated by comma.

Example
Let us do a bit modification in our sayHello function. This time it takes two

parameters:

#!/home/euphoria-4.0b2/bin/eui

function sayHello(sequence name,atom age)

 printf(1, "%s is %d years old.", {name, age})

 return 1

end function

Euphoria

83

-- Call above defined function.

sayHello("zara", 8)

This produces the following result:

zara is 8 years old.

The return Statement

A Euphoria function must have return statement before closing statement end

function. Any Euphoria object can be returned. You can, in effect, have multiple

return values, by returning a sequence of objects. For example:

return {x_pos, y_pos}

If you have nothing to return, then simply return 1 or 0. The return value 1 indicates

success and 0 indicates failure.

Euphoria

84

Using Euphoria programming language, you can write programs that read and change

file data on your floppy drive or hard drive, or create new files as a form of output.

You can even access devices on your computer such as the printer and modem.

This chapter described all the basic I/O functions available in Euphoria. For

information on more functions, please refer to standard Euphoria documentation.

Displaying on the Screen

The simplest way to produce output is using the puts() statement where you can pass

any string to be displayed on the screen. There is another method printf() which can

also be used in case you have to format a string using dynamic values.

These methods convert the expressions you pass them to a string and write the result

to standard output as follows:

#!/home/euphoria-4.0b2/bin/eui

puts(1, "Euphoria is really a great language, isn't it?")

This produces the following result on your standard screen:

Euphoria is really a great language, isn't it?

Opening and Closing Files

Euphoria provides basic methods necessary to manipulate files by default. You can

do your most of the file manipulation using the following methods:

 open()

 close()

 printf()

 gets()

 getc()

16. EUPHORIA FILE I/O

Euphoria

85

The open Method

Before you can read or write a file, you have to open it using Euphoria's built-

in open()method. This function creates a file descriptor which is utilized to call other

supporting methods associated with it.

Syntax

integer file_num = open(file_name, access_mode)

Above method returns -1 in case there is an error in opening the given file name.

Here are the parameters:

 file_name: The file_name argument is a string value that contains the name

of the file that you want to access.

 access_mode: The access_mode determines the mode in which the file has

to be opened. For example, read, write append, etc. A complete list of possible
values for file opening modes is given in the following table:

Modes Description

r Opens a text file for reading only. The file pointer is placed at the

beginning of the file.

rb Opens a file for reading only in binary format. The file pointer is placed at

the beginning of the file.

w Opens a text file for writing only. Overwrites the file if the file exists. If

the file does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file

exists. If the file does not exist, creates a new file for writing.

u Opens a file for both reading and writing. The file pointer is set at the

beginning of the file.

ub Opens a file for both reading and writing in binary format. The file pointer

is placed at the beginning of the file.

Euphoria

86

a Opens a file for appending. The file pointer is at the end of the file if the

file exists (append mode). If the file does not exist, it creates a new file

for writing.

ab Opens a file for appending in binary format. The file pointer is at the end

of the file if the file exists (append mode). If the file does not exist, it

creates a new file for writing.

Example

The following example creates a new text file in the current directory on your Linux

system:

#!/home/euphoria-4.0b2/bin/eui

integer file_num

constant ERROR = 2

constant STDOUT = 1

file_num = open("myfile,txt", "w")

if file_num = -1 then

 puts(ERROR, "couldn't open myfile\n")

else

 puts(STDOUT, "File opend successfully\n")

end if

If file opens successfully, then it "myfile.txt" is created in your current directory and

produces the following result:

File opend successfully

The close() Method

The close() method flushes any unwritten information and closes the file, after which

no more reading or writing can be done on the file.

Euphoria

87

Euphoria automatically closes a file when the reference object of a file is reassigned

to another file. It is a good practice to use the close() method to close a file.

Syntax

close(file_num);

Here the file descriptor received while opening a file is passed as a parameter.

Example

The following example creates a file as above and then closes it before existing the

program:

#!/home/euphoria-4.0b2/bin/eui

integer file_num

constant ERROR = 2

constant STDOUT = 1

file_num = open("myfile.txt", "w")

if file_num = -1 then

 puts(ERROR, "couldn't open myfile\n")

else

 puts(STDOUT, "File opend successfully\n")

end if

if file_num = -1 then

 puts(ERROR, "No need to close the file\n")

else

 close(file_num)

 puts(STDOUT, "File closed successfully\n")

end if

Euphoria

88

This produces the following result:

File opend successfully

File closed successfully

Reading and Writing Files

Euphoria provides a set of access methods to make our lives easier while reading or

writing a file either in text mode or binary mode. Let us see how to

use printf() and gets()methods to read and write files.

The printf() Method

The printf() method writes any string to an open file.

Syntax

printf(fn, st, x)

Here are the parameters:

 fn: File descriptor received from open() method.

 st: Format string where decimal or atom is formatted using %d and string or

sequence is formatted using %s.

 x: If x is a sequence, then format specifiers from st are matched with

corresponding elements of x. If x is an atom, then normally st contains just

one format specifier and it is applied to x. However; if st contains multiple
format specifiers, then each one is applied to the same value x.

Example

The following example opens a file and writes the name and age of a person in this

file:

#!/home/euphoria-4.0b2/bin/eui

integer file_num

constant ERROR = 2

constant STDOUT = 1

Euphoria

89

file_num = open("myfile.txt", "w")

if file_num = -1 then

 puts(ERROR, "couldn't open myfile\n")

else

 puts(STDOUT, "File opend successfully\n")

end if

printf(file_num, "My name is %s and age is %d\n", {"Zara", 8})

if file_num = -1 then

 puts(ERROR, "No need to close the file\n")

else

 close(file_num)

 puts(STDOUT, "File closed successfully\n")

end if

The above example creates myfile.txt file. Is writes given content in that file and

finally closes. If you open this file, it would have the following content:

My name is Zara and age is 8

The gets() Method

The gets() method reads a string from an open file.

Syntax

gets(file_num)

Here passed parameter is file description return by the opend() method. This method

starts reading from the beginning of the file line by line. The characters have values

from 0 to 255. The atom -1 is returned on end of file.

Euphoria

90

Example
Let us take a file myfile.txt which is already created.

#!/home/euphoria-4.0b2/bin/eui

integer file_num

object line

constant ERROR = 2

constant STDOUT = 1

file_num = open("myfile.txt", "r")

if file_num = -1 then

 puts(ERROR, "couldn't open myfile\n")

else

 puts(STDOUT, "File opend successfully\n")

end if

line = gets(file_num)

printf(STDOUT, "Read content : %s\n", {line})

if file_num = -1 then

 puts(ERROR, "No need to close the file\n")

else

 close(file_num)

 puts(STDOUT, "File closed successfully\n")

end if

Euphoria

91

This produces the following result:

File opend successfully

Read content : My name is Zara and age is 8

File closed successfully

File & Directory Related Methods

Euphoria provides a list of many methods which helps you in manipulating files. These

methods are listed in Euphoria Library Routines.

http://localhost/euphoria/euphoria_library_routines.htm

