
http://www.tutorialspoint.com/ejb/ejb_persistence.htm Copyright © tutorialspoint.com

EJB - PERSISTENCEEJB - PERSISTENCE

Previous Page
Next Page

EJB 3.0, entity bean used in EJB 2.0 is largely replaced by persistence mechanism. Now entity bean
is a simple POJO having mapping with table.

Following are the key actors in persistence API

Entity - A persistent object representing the data-store record. It is good to be serializable.

EntityManager - Persistence interface to do data operations like add/delete/update/find on
persistent objectentity. It also helps to execute queries using Query interface.

Persistence unit persistence. xml - Persistence unit describes the properties of persistence
mechanism.

Data Source ∗ ds. xml - Data Source describes the data-store related properties like
connection url. user-name,password etc.

To demonstrate ejb persistence mechanism, we're going to do the following tasks.

Step 1. Create table in database.

Step 2. Create Entity class corresponding to table.

Step 3. Create Data Source and Persistence Unit

Step 4. Create a stateless ejb having EntityManager instance.

Step 5. Update stateless ejb. Add methods to add records and get records from database via
entity manager.

Step 6. A console based application client will access the stateless ejb to persist data in
database.

Create table
Create a table books in default database postgres.

CREATE TABLE books (
 id integer PRIMARY KEY,
 name varchar(50)
);

Create Entity class

//mark it entity using Entity annotation
//map table name using Table annoation
@Entity
@Table(name="books")
public class Book implements Serializable{

 private int id;
 private String name;

 public Book(){
 }

 //mark id as primary key with autogenerated value

http://www.tutorialspoint.com/ejb/ejb_persistence.htm
/ejb/ejb_stateful_beans.htm
/ejb/ejb_message_driven_beans.htm

 //map database column id with id field
 @Id
 @GeneratedValue(strategy= GenerationType.IDENTITY)
 @Column(name="id")
 public int getId() {
 return id;
 }
 ...
}

Create DataSource and persistence unit
DataSource jboss − ds. xml

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>PostgresDS</jndi-name>
 <connection-url>jdbc:postgresql://localhost:5432/postgres</connection-url>
 <driver-class>org.postgresql.driver</driver-class>
 <user-name>sa</user-name>
 <password>sa</password>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <idle-timeout-minutes>5</idle-timeout-minutes>
 </local-tx-datasource>
</datasources>

Persistence Unit persistence. xml

<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="EjbComponentPU" transaction-type="JTA">
 <jta-data-source>java:/PostgresDS</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties/>
 </persistence-unit>
 <persistence-unit name="EjbComponentPU2" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/PostgresDS</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 </properties>
 </persistence-unit>
</persistence>

Create Stateless EJB having EntityManager instance

@Stateless
public class LibraryPersistentBean implements LibraryPersistentBeanRemote {

 //pass persistence unit to entityManager.
 @PersistenceContext(unitName="EjbComponentPU")
 private EntityManager entityManager;

 public void addBook(Book book) {
 entityManager.persist(book);
 }

 public List<Book> getBooks() {
 return entityManager.createQuery("From Books").getResultList();
 }
 ...
}

After building the ejb module, we need a client to access the stateless bean which we'll be going to
create in next section.

Example Application
Let us create a test EJB application to test EJB persistence mechanism.

Step Description

1 Create a project with a name EjbComponent under a package com.tutorialspoint.entity
as explained in the EJB - Create Application chapter. You can also use the project
created in EJB - Create Application chapter as such for this chapter to understand ejb
persistence concepts.

2 Create Book.java under package com.tutorialspoint.entity and modify it as shown below.

3 Create LibraryPersistentBean.java and LibraryPersistentBeanRemote as explained in the
EJB - Create Application chapter and modify them as shown below.

4 Create jboss-ds.xml in EjbComponent > setup folder and persistence.xml in
EjbComponent > src > conf folder. These folder can be seen in files tab in Netbeans.
Modify these files as shown above.

5 Clean and Build the application to make sure business logic is working as per the
requirements.

6 Finally, deploy the application in the form of jar file on JBoss Application Server. JBoss
Application server will get started automatically if it is not started yet.

7 Now create the ejb client, a console based application in the same way as explained in
the EJB - Create Application chapter under topic Create Client to access EJB. Modify it
as shown below.

EJBComponent EJBModule

Book.java

package com.tutorialspoint.entity;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.EntityListeners;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name="books")
public class Book implements Serializable{

 private int id;
 private String name;

 public Book(){
 }

 @Id
 @GeneratedValue(strategy= GenerationType.IDENTITY)
 @Column(name="id")
 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

LibraryPersistentBeanRemote.java

package com.tutorialspoint.stateless;

import com.tutorialspoint.entity.Book;
import java.util.List;
import javax.ejb.Remote;

@Remote
public interface LibraryPersistentBeanRemote {

 void addBook(Book bookName);

 List<Book> getBooks();

}

LibraryPersistentBean.java

package com.tutorialspoint.stateless;

import com.tutorialspoint.entity.Book;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
public class LibraryPersistentBean implements LibraryPersistentBeanRemote {

 public LibraryPersistentBean(){
 }

 @PersistenceContext(unitName="EjbComponentPU")
 private EntityManager entityManager;

 public void addBook(Book book) {
 entityManager.persist(book);
 }

 public List<Book> getBooks() {
 return entityManager.createQuery("From Book").getResultList();
 }
}

As soon as you deploy the EjbComponent project on JBOSS, notice the jboss log.

JBoss has automatically created a JNDI entry for our session bean -
LibraryPersistentBean/remote.

We'll using this lookup string to get remote business object of type -
com.tutorialspoint.stateless.LibraryPersistentBeanRemote

JBoss Application server log output

...
16:30:01,401 INFO [JndiSessionRegistrarBase] Binding the following Entries in Global
JNDI:
 LibraryPersistentBean/remote - EJB3.x Default Remote Business Interface
 LibraryPersistentBean/remote-com.tutorialspoint.stateless.LibraryPersistentBeanRemote
- EJB3.x Remote Business Interface
16:30:02,723 INFO [SessionSpecContainer] Starting
jboss.j2ee:jar=EjbComponent.jar,name=LibraryPersistentBeanRemote,service=EJB3
16:30:02,723 INFO [EJBContainer] STARTED EJB:
com.tutorialspoint.stateless.LibraryPersistentBeanRemote ejbName: LibraryPersistentBean
16:30:02,731 INFO [JndiSessionRegistrarBase] Binding the following Entries in Global
JNDI:

 LibraryPersistentBean/remote - EJB3.x Default Remote Business Interface
 LibraryPersistentBean/remote-com.tutorialspoint.stateless.LibraryPersistentBeanRemote
- EJB3.x Remote Business Interface
...

EJBTester EJBClient

jndi.properties

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=localhost

These properties are used to initialize the InitialContext object of java naming service

InitialContext object will be used to lookup stateless session bean

EJBTester.java

package com.tutorialspoint.test;

import com.tutorialspoint.stateless.LibraryPersistentBeanRemote;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.List;
import java.util.Properties;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class EJBTester {

 BufferedReader brConsoleReader = null;
 Properties props;
 InitialContext ctx;
 {
 props = new Properties();
 try {
 props.load(new FileInputStream("jndi.properties"));
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 try {
 ctx = new InitialContext(props);
 } catch (NamingException ex) {
 ex.printStackTrace();
 }
 brConsoleReader =
 new BufferedReader(new InputStreamReader(System.in));
 }

 public static void main(String[] args) {

 EJBTester ejbTester = new EJBTester();

 ejbTester.testEntityEjb();
 }

 private void showGUI(){
 System.out.println("**********************");
 System.out.println("Welcome to Book Store");
 System.out.println("**********************");
 System.out.print("Options \n1. Add Book\n2. Exit \nEnter Choice: ");
 }

 private void testEntityEjb(){

 try {
 int choice = 1;

 LibraryPersistentBeanRemote libraryBean =
 LibraryPersistentBeanRemote)ctx.lookup("LibraryPersistentBean/remote");

 while (choice != 2) {
 String bookName;
 showGUI();
 String strChoice = brConsoleReader.readLine();
 choice = Integer.parseInt(strChoice);
 if (choice == 1) {
 System.out.print("Enter book name: ");
 bookName = brConsoleReader.readLine();
 Book book = new Book();
 book.setName(bookName);
 libraryBean.addBook(book);
 } else if (choice == 2) {
 break;
 }
 }

 List<Book> booksList = libraryBean.getBooks();

 System.out.println("Book(s) entered so far: " + booksList.size());
 int i = 0;
 for (Book book:booksList) {
 System.out.println((i+1)+". " + book.getName());
 i++;
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }finally {
 try {
 if(brConsoleReader !=null){
 brConsoleReader.close();
 }
 } catch (IOException ex) {
 System.out.println(ex.getMessage());
 }
 }
 }
}

EJBTester is doing the following tasks.

Load properties from jndi.properties and initialize the InitialContext object.

In testStatefulEjb method, jndi lookup is done with name -
"LibraryStatefulSessionBean/remote" to obtain the remote business object statefulejb.

Then user is shown a library store User Interface and he/she is asked to enter choice.

If user enters 1, system asks for book name and saves the book using stateless session bean
addBook method. Session Bean is persisting the book in database via EntityManager call.

If user enters 2, system retrieves books using stateful session bean getBooks method and
exits.

Then another jndi lookup is done with name - "LibraryStatelessSessionBean/remote" to
obtain the remote business object statelessejb again and listing of books is done.

Run Client to access EJB
Locate EJBTester.java in project explorer. Right click on EJBTester class and select run file.

Verify the following output in Netbeans console.

run:

Welcome to Book Store

Options
1. Add Book
2. Exit
Enter Choice: 1
Enter book name: Learn Java

Welcome to Book Store

Options
1. Add Book
2. Exit
Enter Choice: 2
Book(s) entered so far: 1
1. learn java
BUILD SUCCESSFUL (total time: 15 seconds)

Run Client again to access EJB.
Restart the JBoss before accessing the EJB.

Locate EJBTester.java in project explorer. Right click on EJBTester class and select run file.

Verify the following output in Netbeans console.

run:

Welcome to Book Store

Options
1. Add Book
2. Exit
Enter Choice: 1
Enter book name: Learn Spring

Welcome to Book Store

Options
1. Add Book
2. Exit
Enter Choice: 2
Book(s) entered so far: 2
1. learn java
2. Learn Spring
BUILD SUCCESSFUL (total time: 15 seconds)

Output shown above states that books are getting stored in persistent storage and are
retrieved from database.

Previous Page
Print
PDF
Next Page Processing math: 100%

/ejb/ejb_stateful_beans.htm
/cgi-bin/printpage.cgi
/ejb/pdf/ejb_persistence.pdf
/ejb/ejb_message_driven_beans.htm

