Mastering Reinforcement Learning with Python
Build next-generation, self-learning models using reinforcement learning techniques and best practices
Language - English
Updated on Jan, 2021
About the Book
Book description
Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices
Key Features
- Understand how large-scale state-of-the-art RL algorithms and approaches work
- Apply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and more
- Explore tips and best practices from experts that will enable you to overcome real-world RL challenges
Book Description
Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL.
Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning.
As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls.
By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems.
What you will learn
- Model and solve complex sequential decision-making problems using RL
- Develop a solid understanding of how state-of-the-art RL methods work
- Use Python and TensorFlow to code RL algorithms from scratch
- Parallelize and scale up your RL implementations using Ray's RLlib package
- Get in-depth knowledge of a wide variety of RL topics
- Understand the trade-offs between different RL approaches
- Discover and address the challenges of implementing RL in the real world
Who this book is for
This book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.

eBook Preview
Author Details

Packt Publishing
Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.
Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.
As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.
Our students work
with the Best


































Related eBooks
Annual Membership
Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses
Subscribe now
Online Certifications
Master prominent technologies at full length and become a valued certified professional.
Explore Now