Machine Learning with Amazon SageMaker Cookbook
Machine Learning with Amazon SageMaker Cookbook
Language - English
Updated on Jan, 2023
About the Book
Book description
A step-by-step solution-based guide to preparing building, training, and deploying high-quality machine learning models with Amazon SageMaker
Key Features
- Perform ML experiments with built-in and custom algorithms in SageMaker
- Explore proven solutions when working with TensorFlow, PyTorch, Hugging Face Transformers, and scikit-learn
- Use the different features and capabilities of SageMaker to automate relevant ML processes
Book Description
Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems.
This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams.
By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
What you will learn
- Train and deploy NLP, time series forecasting, and computer vision models to solve different business problems
- Push the limits of customization in SageMaker using custom container images
- Use AutoML capabilities with SageMaker Autopilot to create high-quality models
- Work with effective data analysis and preparation techniques
- Explore solutions for debugging and managing ML experiments and deployments
- Deal with bias detection and ML explainability requirements using SageMaker Clarify
- Automate intermediate and complex deployments and workflows using a variety of solutions
Who this book is for
This book is for developers, data scientists, and machine learning practitioners interested in using Amazon SageMaker to build, analyze, and deploy machine learning models with 80 step-by-step recipes. All you need is an AWS account to get things running. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.

eBook Preview
Author Details

Packt Publishing
Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.
Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.
As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.
Our students work
with the Best


































Related eBooks
Annual Membership
Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses
Subscribe now
Online Certifications
Master prominent technologies at full length and become a valued certified professional.
Explore Now