Machine Learning Engineering with Python
Machine Learning Engineering with Python
Language - English
Updated on Jan, 2023
About the Book
Book description
Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments
Key Features
- Explore hyperparameter optimization and model management tools
- Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages
- Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases
Book Description
Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services.
Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems.
By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.
What you will learn
- Find out what an effective ML engineering process looks like
- Uncover options for automating training and deployment and learn how to use them
- Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions
- Understand what aspects of software engineering you can bring to machine learning
- Gain insights into adapting software engineering for machine learning using appropriate cloud technologies
- Perform hyperparameter tuning in a relatively automated way
Who this book is for
This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.

eBook Preview
Author Details

Packt Publishing
Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.
Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.
As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.
Our students work
with the Best


































Related eBooks
Annual Membership
Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses
Subscribe now
Online Certifications
Master prominent technologies at full length and become a valued certified professional.
Explore Now