Machine Learning Engineering with MLflow
Machine Learning Engineering with MLflow
Language - English
Updated on Jan, 2023
About the Book
Book description
Get up and running, and productive in no time with MLflow using the most effective machine learning engineering approach
Key Features
- Explore machine learning workflows for stating ML problems in a concise and clear manner using MLflow
- Use MLflow to iteratively develop a ML model and manage it
- Discover and work with the features available in MLflow to seamlessly take a model from the development phase to a production environment
Book Description
MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments.
This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you’ll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins.
By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments.
What you will learn
- Develop your machine learning project locally with MLflow’s different features
- Set up a centralized MLflow tracking server to manage multiple MLflow experiments
- Create a model life cycle with MLflow by creating custom models
- Use feature streams to log model results with MLflow
- Develop the complete training pipeline infrastructure using MLflow features
- Set up an inference-based API pipeline and batch pipeline in MLflow
- Scale large volumes of data by integrating MLflow with high-performance big data libraries
Who this book is for
This book is for data scientists, machine learning engineers, and data engineers who want to gain hands-on machine learning engineering experience and learn how they can manage an end-to-end machine learning life cycle with the help of MLflow. Intermediate-level knowledge of the Python programming language is expected.

eBook Preview
Author Details

Packt Publishing
Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.
Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.
As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.
Our students work
with the Best


































Related eBooks
Annual Membership
Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses
Subscribe now
Online Certifications
Master prominent technologies at full length and become a valued certified professional.
Explore Now