Hands-On Reinforcement Learning for Games
Implementing self-learning agents in games using artificial intelligence techniques
Language - English
Updated on Oct, 2020
About the Book
Book description
Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow
Key Features
- Get to grips with the different reinforcement and DRL algorithms for game development
- Learn how to implement components such as artificial agents, map and level generation, and audio generation
- Gain insights into cutting-edge RL research and understand how it is similar to artificial general research
Book Description
With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python.
Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games.
By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
What you will learn
- Understand how deep learning can be integrated into an RL agent
- Explore basic to advanced algorithms commonly used in game development
- Build agents that can learn and solve problems in all types of environments
- Train a Deep Q-Network (DQN) agent to solve the CartPole balancing problem
- Develop game AI agents by understanding the mechanism behind complex AI
- Integrate all the concepts learned into new projects or gaming agents
Who this book is for
If you’re a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.

eBook Preview
Author Details

Packt Publishing
Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.
Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.
As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.
Our students work
with the Best


































Related eBooks
Annual Membership
Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses
Subscribe now
Online Certifications
Master prominent technologies at full length and become a valued certified professional.
Explore Now