Tutorialspoint

Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

Practical Q-learning with OpenAI Gym, Keras, and TensorFlow

person icon Nazia Habib

ebook icon Packt Publishing

language icon Language - English

updated on icon Updated on Sep, 2020

architecture icon Development,Programming Languages,Python

price-loader

This eBook includes

Formats : PDF, EPUB, MOBI (Downlodable)

Pages : 212

ISBN : 9781789345759

Language : English

About the Book

Book description

Leverage the power of reward-based training for your deep learning models with Python

Key Features

  • Understand Q-learning algorithms to train neural networks using Markov Decision Process (MDP)
  • Study practical deep reinforcement learning using Q-Networks
  • Explore state-based unsupervised learning for machine learning models

Book Description

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers.

This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you get familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into modelfree Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in real-world applications such as scientific research. Toward the end, you’ll gain a sense of what’s in store for reinforcement learning.

By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.

What you will learn

  • Explore the fundamentals of reinforcement learning and the state-action-reward process
  • Understand Markov decision processes
  • Get well versed with libraries such as Keras, and TensorFlow
  • Create and deploy model-free learning and deep Q-learning agents with TensorFlow, Keras, and OpenAI Gym
  • Choose and optimize a Q-Network’s learning parameters and fine-tune its performance
  • Discover real-world applications and use cases of Q-learning

Who this book is for

If you are a machine learning developer, engineer, or professional who wants to delve into the deep learning approach for a complex environment, then this is the book for you. Proficiency in Python programming and basic understanding of decision-making in reinforcement learning is assumed.

Hands-On Q-Learning with Python

eBook Preview

Author Details

Packt Publishing

Packt Publishing

Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.

Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.

As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.

Our students work
with the Best

Related eBooks

View More

Annual Membership

Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses

Subscribe now
People having fun around a laptop

Online Certifications

Master prominent technologies at full length and become a valued certified professional.

Explore Now
People having fun around a laptop

Talk to us

1800-202-0515