Applied Unsupervised Learning with Python

Applied Unsupervised Learning with Python

Discover hidden patterns and relationships in unstructured data with Python


This eBook includes

Formats : PDF, EPUB, MOBI (Downlodable)

Pages : 482

ISBN : 9781789958379

Language : English

About the Book

Book description

Design clever algorithms that can uncover interesting structures and hidden relationships in unstructured, unlabeled data 

Key Features

  • Learn how to select the most suitable Python library to solve your problem
  • Compare k-Nearest Neighbor (k-NN) and non-parametric methods and decide when to use them
  • Delve into the applications of neural networks using real-world datasets

Book Description

Unsupervised learning is a useful and practical solution in situations where labeled data is not available.

Applied Unsupervised Learning with Python guides you on the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The course begins by explaining how basic clustering works to find similar data points in a set. Once you are well versed with the k-means algorithm and how it operates, you’ll learn what dimensionality reduction is and where to apply it. As you progress, you’ll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. You will complete the course by challenging yourself through various interesting activities such as performing a Market Basket Analysis and identifying relationships between different merchandises.

By the end of this course, you will have the skills you need to confidently build your own models using Python.

What you will learn

  • Understand the basics and importance of clustering
  • Build k-means, hierarchical, and DBSCAN clustering algorithms from scratch with built-in packages
  • Explore dimensionality reduction and its applications
  • Use scikit-learn (sklearn) to implement and analyse principal component analysis (PCA)on the Iris dataset
  • Employ Keras to build autoencoder models for the CIFAR-10 dataset
  • Apply the Apriori algorithm with machine learning extensions (Mlxtend) to study transaction data

Who this book is for

This course is designed for developers, data scientists, and machine learning enthusiasts who are interested in unsupervised learning. Some familiarity with Python programming along with basic knowledge of mathematical concepts including exponents, square roots, means, and medians will be beneficial.

Applied Unsupervised Learning with Python

eBook Preview

Author Details

Packt Publishing

Packt Publishing

Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.

Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.

As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.

Our students work
with the Best

Related eBooks

View More

Annual Membership

Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses

Subscribe now
People having fun around a laptop

Online Certifications

Master prominent technologies at full length and become a valued certified professional.

Explore Now
People having fun around a laptop

Talk to us