Tutorialspoint

Applied Supervised Learning with R

Applied Supervised Learning with R

Use machine learning libraries of R to build models that solve business problems and predict future trends

price-loader

This eBook includes

Formats : PDF, EPUB, MOBI (Downlodable)

Pages : 502

ISBN : 9781838557164

Language : English

About the Book

Book description

Learn the ropes of supervised machine learning with R by studying popular real-world use-cases, and understand how it drives object detection in driver less cars, customer churn, and loan default prediction. 

Key Features

  • Study supervised learning algorithms by using real-world datasets
  • Fine tune optimal parameters with hyperparameter optimization
  • Select the best algorithm using the model evaluation framework

Book Description

R provides excellent visualization features that are essential for exploring data before using it in automated learning.

Applied Supervised Learning with R helps you cover the complete process of employing R to develop applications using supervised machine learning algorithms for your business needs. The book starts by helping you develop your analytical thinking to create a problem statement using business inputs and domain research. You will then learn different evaluation metrics that compare various algorithms, and later progress to using these metrics to select the best algorithm for your problem. After finalizing the algorithm you want to use, you will study the hyperparameter optimization technique to fine-tune your set of optimal parameters. To prevent you from overfitting your model, a dedicated section will even demonstrate how you can add various regularization terms.

By the end of this book, you will have the advanced skills you need for modeling a supervised machine learning algorithm that precisely fulfills your business needs.

What you will learn

  • Develop analytical thinking to precisely identify a business problem
  • Wrangle data with dplyr, tidyr, and reshape2
  • Visualize data with ggplot2
  • Validate your supervised machine learning model using k-fold
  • Optimize hyperparameters with grid and random search, and Bayesian optimization
  • Deploy your model on Amazon Web Services (AWS) Lambda with plumber
  • Improve your model’s performance with feature selection and dimensionality reduction

Who this book is for

This book is specially designed for novice and intermediate-level data analysts, data scientists, and data engineers who want to explore different methods of supervised machine learning and its various use cases. Some background in statistics, probability, calculus, linear algebra, and programming will help you thoroughly understand and follow the content of this book.

Applied Supervised Learning with R

eBook Preview

Author Details

Packt Publishing

Packt Publishing

Founded in 2004 in Birmingham, UK, Packt's mission is to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals.

Working towards that vision, we have published over 6,500 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools.

As part of our mission, we have also awarded over $1,000,000 through our Open Source Project Royalty scheme, helping numerous projects become household names along the way.

Our students work
with the Best

Related eBooks

View More

Annual Membership

Become a valued member of Tutorials Point and enjoy unlimited access to our vast library of top-rated Video Courses

Subscribe now
People having fun around a laptop

Online Certifications

Master prominent technologies at full length and become a valued certified professional.

Explore Now
People having fun around a laptop

Talk to us

1800-202-0515