
http://www.tutorialspoint.com/easymock/easymock_first_application.htm Copyright © tutorialspoint.com

EASYMOCK - FIRST APPLICATIONEASYMOCK - FIRST APPLICATION

Before going into the details of the EasyMock Framework, let’s see an application in action. In this
example, we've created a mock of Stock Service to get the dummy price of some stocks and unit
tested a java class named Portfolio.

The process is discussed below in a step-by-step manner.

Step 1: Create a JAVA class to represent the Stock

File: Stock.java

public class Stock {
 private String stockId;
 private String name;
 private int quantity;

 public Stock(String stockId, String name, int quantity){
 this.stockId = stockId;
 this.name = name;
 this.quantity = quantity;
 }

 public String getStockId() {
 return stockId;
 }

 public void setStockId(String stockId) {
 this.stockId = stockId;
 }

 public int getQuantity() {
 return quantity;
 }

 public String getTicker() {
 return name;
 }
}

Step 2: Create an interface StockService to get the price of a stock

File: StockService.java

public interface StockService {
 public double getPrice(Stock stock);
}

Step 3: Create a class Portfolio to represent the portfolio of any client

File: Portfolio.java

import java.util.List;

public class Portfolio {
 private StockService stockService;
 private List stocks;

 public StockService getStockService() {
 return stockService;
 }

 public void setStockService(StockService stockService) {
 this.stockService = stockService;

http://www.tutorialspoint.com/easymock/easymock_first_application.htm

 }

 public List getStocks() {
 return stocks;
 }

 public void setStocks(List stocks) {
 this.stocks = stocks;
 }

 public double getMarketValue(){
 double marketValue = 0.0;

 for(Stock stock:stocks){
 marketValue += stockService.getPrice(stock) * stock.getQuantity();
 }
 return marketValue;
 }
}

Step 4: Test the Portfolio class

Let's test the Portfolio class, by injecting in it a mock of stockservice. Mock will be created by
EasyMock.

File: PortfolioTester.java

import java.util.ArrayList;
import java.util.List;

import org.easymock.EasyMock;

public class PortfolioTester {
 Portfolio portfolio;
 StockService stockService;

 public static void main(String[] args){
 PortfolioTester tester = new PortfolioTester();
 tester.setUp();
 System.out.println(tester.testMarketValue()?"pass":"fail");
 }

 public void setUp(){
 //Create a portfolio object which is to be tested
 portfolio = new Portfolio();

 //Create the mock object of stock service
 stockService = EasyMock.createMock(StockService.class);

 //set the stockService to the portfolio
 portfolio.setStockService(stockService);
 }

 public boolean testMarketValue(){

 //Creates a list of stocks to be added to the portfolio
 List<Stock> stocks = new ArrayList<Stock>();
 Stock googleStock = new Stock("1","Google", 10);
 Stock microsoftStock = new Stock("2","Microsoft",100);

 stocks.add(googleStock);
 stocks.add(microsoftStock);

 //add stocks to the portfolio
 portfolio.setStocks(stocks);

 // mock the behavior of stock service to return the value of various stocks
 EasyMock.expect(stockService.getPrice(googleStock)).andReturn(50.00);
 EasyMock.expect(stockService.getPrice(microsoftStock)).andReturn(1000.00);

 // activate the mock
 EasyMock.replay(stockService);

 double marketValue = portfolio.getMarketValue();
 return marketValue == 100500.0;
 }
}

Step 5: Verify the result

Compile the classes using javac compiler as follows:

C:\EasyMock_WORKSPACE>javac Stock.java StockService.java Portfolio.java
PortfolioTester.java

Now run the PortfolioTester to see the result:

C:\EasyMock_WORKSPACE>java PortfolioTester

Verify the Output

pass

