EASYMOCK - EXPECTING CALLS

EasyMock provides a special check on the number of calls that can be made on a particular
method. Suppose MathApplication should call the CalculatorService.serviceUsed method only
once, then it should not be able to call CalculatorService.serviceUsed more than once.

//add the behavior of calc service to add two numbers and serviceUsed.
EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);
calcService.serviceUsed();

//1imit the method call to 1, no less and no more calls are allowed
EasyMock.expectLastCall().times(1);

Create CalculatorService interface as follows.

File: CalculatorService.java

public interface CalculatorService {
public double add(double inputl, double input2);
public double subtract(double inputl, double input2);
public double multiply(double inputl, double input2);
public double divide(double inputl, double input2);
public void serviceUsed();

}

Example with calcService.serviceUsed called once

Step 1: Create an interface called CalculatorService to provide mathematical functions

File: CalculatorService.java

public interface CalculatorService {
public double add(double inputl, double input2);
public double subtract(double inputl, double input2);
public double multiply(double inputl, double input2);
public double divide(double inputl, double input2);
public void serviceUsed();

}

Step 2: Create a JAVA class to represent MathApplication
File: MathApplication.java

public class MathApplication {
private CalculatorService calcService;

public void setCalculatorService(CalculatorService calcService){
this.calcService = calcService;
}

public double add(double inputl, double input2){
calcService.serviceUsed();

return calcService.add(inputl, input2);

}

public double subtract(double inputl, double input2){
return calcService.subtract(inputl, input2);
}

public double multiply(double inputl, double input2){
return calcService.multiply(inputl, input2);
}


http://www.tutorialspoint.com/easymock/easymock_expecting_calls.htm

public double divide(double inputl, double input2){
return calcService.divide(inputl, input2);
}

Step 3: Test the MathApplication class

Let's test the MathApplication class, by injecting in it a mock of calculatorService. Mock will be
created by EasyMock.

File: MathApplicationTester.java

import org.easymock.EasyMock;
import org.easymock.EasyMockRunner ;
import org.easymock.Mock;

import org.easymock.TestSubject;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner .RunWith;

// @RunWith attaches a runner with the test class to initialize the test data
@Runwith(EasyMockRunner .class)
public class MathApplicationTester {

// @TestSubject annotation is used to identify class which is going to use the mock
object

@TestSubject

MathApplication mathApplication = new MathApplication();

// @Mock annotation is used to create the mock object to be injected
@Mock
CalculatorService calcService;

@Test

public void testAdd(){
//add the behavior of calc service to add two numbers
EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);
calcService.serviceUsed();
EasyMock.expectLastCall().times(1);

//activate the mock
EasyMock.replay(calcService);

//test the add functionality
Assert.assertEquals(mathApplication.add(10.0, 20.0),30.0,0);

//verify call to calcService is made or not
EasyMock.verify(calcService);

Step 4: Execute test cases

Create a java class file named TestRunner in C:\> EasyMock_WORKSPACE to execute Test cases

File: TestRunner.java

import org.junit.runner.JUnitCore;
import org.junit.runner .Result;
import org.junit.runner.notification.Failure;

public class TestRunner {
public static void main(String[] args) {
Result result = JUnitCore.runClasses(MathApplicationTester.class);



for (Failure failure : result.getFailures()) {
System.out.println(failure.toString());
}

System.out.println(result.wasSuccessful());

}

Step 5: Verify the Result

Compile the classes using javac compiler as follows:

C:\EasyMock _WORKSPACE>javac Calculator Service.java Math Application.java Math
Application Tester.java Test Runner.java

Now run the Test Runner to see the result:

C:\EasyMock_WORKSPACE>java TestRunner

Verify the output.

true

Example with calcService.serviceUsed Called Twice

Step 1: Create an interface CalculatorService to provide mathematical functions.

File: CalculatorService.java

public interface CalculatorService {
public double add(double inputl, double input2);
public double subtract(double inputl, double input2);
public double multiply(double inputl, double input2);
public double divide(double inputl, double input2);
public void serviceUsed();

}

Step 2: Create a JAVA class to represent MathApplication.

File: MathApplication.java

public class MathApplication {
private CalculatorService calcService;

public void setCalculatorService(CalculatorService calcService){
this.calcService = calcService;
}

public double add(double inputl, double input2){
calcService.serviceUsed();
calcService.serviceUsed();
return calcService.add(inputl, input2);

}

public double subtract(double inputl, double input2){
return calcService.subtract(inputl, input2);
}

public double multiply(double inputl, double input2){
return calcService.multiply(inputl, input2);
}

public double divide(double inputl, double input2){
return calcService.divide(inputl, input2);
}



Step 3: Test the MathApplication class

Let's test the MathApplication class, by injecting in it a mock of calculatorService. Mock will be
created by EasyMock.

File: MathApplicationTester.java

import org.easymock.EasyMock;
import org.easymock.EasyMockRunner ;
import org.easymock.Mock;

import org.easymock.TestSubject;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner .RunwWith;

// @RunWith attaches a runner with the test class to initialize the test data
@RunWith(EasyMockRunner .class)
public class MathApplicationTester {

// @TestSubject annotation is used to identify class which is going to use the mock
object

@TestSubject

MathApplication mathApplication = new MathApplication();

//@Mock annotation is used to create the mock object to be injected
@Mock
CalculatorService calcService;

@Test

public void testAdd(){
//add the behavior of calc service to add two numbers
EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);
calcService.serviceUsed();
EasyMock.expectLastCall().times(1);

//activate the mock
EasyMock.replay(calcService);

//test the add functionality
Assert.assertEquals(mathApplication.add(10.0, 20.0),30.0,0);

//verify call to calcService is made or not
EasyMock.verify(calcService);

Step 4: Execute test cases<
Create a java class file named TestRunner in C:\> EasyMock_WORKSPACEto execute Test cases.

File: TestRunner.java

import org.junit.runner.JUnitCore;
import org.junit.runner .Result;
import org.junit.runner.notification.Failure;

public class TestRunner {
public static void main(String[] args) {
Result result = JUnitCore.runClasses(MathApplicationTester.class);

for (Failure failure : result.getFailures()) {
System.out.println(failure.toString());
}

System.out.println(result.wasSuccessful());



Step 5: Verify the Result

Compile the classes using javac compiler as follows:

C:\EasyMock_WORKSPACE>javac CalculatorService.java MathApplication.java
MathApplicationTester.java TestRunner.java

Now run the Test Runner to see the result:

C:\EasyMock _WORKSPACE>java TestRunner
Verify the output.

testAdd(com.tutorialspoint.mock.MathApplicationTester):
Unexpected method call CalculatorService.serviceUsed():
CalculatorService.add(10.0, 20.0): expected: 1, actual: ©
CalculatorService.serviceUsed(): expected: 1, actual: 2
false

Example without Calling calcService.serviceUsed

Step 1: Create an interface Calculator Service to provide mathematical functions

File: CalculatorService.java

public interface CalculatorService {
public double add(double inputl, double input2);
public double subtract(double inputl, double input2);
public double multiply(double inputl, double input2);
public double divide(double inputl, double input2);
public void serviceUsed();

}

Step 2: Create a JAVA class to represent MathApplication

File: MathApplication.java

public class MathApplication {
private CalculatorService calcService;

public void setCalculatorService(CalculatorService calcService){
this.calcService = calcService;
}

public double add(double inputl, double input2){
return calcService.add(inputl, input2);
}

public double subtract(double inputl, double input2){
return calcService.subtract(inputl, input2);
}

public double multiply(double inputl, double input2){
return calcService.multiply(inputl, input2);
}

public double divide(double inputl, double input2){
return calcService.divide(inputl, input2);
}

}
Step 3: Test the MathApplication class

Let's test the MathApplication class, by injecting in it a mock of calculatorService. Mock will be



created by EasyMock.

File: MathApplicationTester.java

import org.easymock.EasyMock;
import org.easymock.EasyMockRunner ;
import org.easymock.Mock;

import org.easymock.TestSubject;

import org.junit.Assert;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

// @RunWith attaches a runner with the test class to initialize the test data
@Runwith(EasyMockRunner .class)
public class MathApplicationTester {

// @TestSubject annotation is used to identify class which is going to use the mock
object

@TestSubject

MathApplication mathApplication = new MathApplication();

//@Mock annotation is used to create the mock object to be injected
@Mock
CalculatorService calcService;

@Test
public void testAdd(){

//add the behavior of calc service to add two numbers
EasyMock.expect(calcService.add(10.0,20.0)).andReturn(30.00);
calcService.serviceUsed();
EasyMock.expectLastCall().times(1);

//activate the mock
EasyMock.replay(calcService);

//test the add functionality
Assert.assertEquals(mathApplication.add(10.0, 20.0),30.0,0);

//verify call to calcService is made or not
EasyMock.verify(calcService);

Step 4: Execute test cases

Create a java class file named TestRunner in C:\> EasyMock_WORKSPACE to execute Test cases

File: TestRunner.java

import org.junit.runner.JUnitCore;
import org.junit.runner .Result;
import org.junit.runner.notification.Failure;

public class TestRunner {
public static void main(String[] args) {
Result result = JuUnitCore.runClasses(MathApplicationTester.class);

for (Failure failure : result.getFailures()) {
System.out.println(failure.toString());
}

System.out.println(result.wasSuccessful());



Step 5: Verify the Result

Compile the classes using javac compiler as follows:

C:\EasyMock WORKSPACE>javac Calculator Service.java Math Application.java Math
Application Tester.java Test Runner.java

Now run the Test Runner to see the result:

C:\EasyMock _WORKSPACE>java TestRunner
Verify the output.

testAdd(com.tutorialspoint.mock.MathApplicationTester):
Expectation failure on verify:
CalculatorService.serviceUsed(): expected: 1, actual: 0

falca

Processing math: 100%



