tutorialspoint

S I MPLYEASYLEARNINIG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

XML DOM

About the Tutorial

The Document Object Model (DOM) is a W3C standard. It defines a standard for accessing
documents like HTML and XML.

This tutorial will teach you the basics of XML DOM. The tutorial is divided into sections
such as XML DOM Basics, XML DOM Operations and XML DOM Objects. Each of these
sections contain related topics with simple and useful examples.

Audience

This reference has been prepared for the beginners to help them understand the basic-to-
advanced concepts related to XML DOM. This tutorial will give you enough understanding
on XML DOM from where you can take yourself to a higher level of expertise.

Prerequisites

Before proceeding with this tutorial you should have basic knowledge of XML, HTML and
Javascript.

Disclaimer & Copyright

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com.

utorialspoint

PLYEASYLEARMNINEG

mailto:contact@tutorialspoint.com

XML DOM

Table of Contents
ADOUL TNE TULOITAL c.eviiiiieeiee ettt ettt e s bt e e bt e e s bee e bt e e s b beesateesabeesateesabeesaseesabaesaseenas i
F Y0 Lo [T o ol OO TSRS URRTPTRTSRRPRIN i
=T =To LT =L P PP PPPPPPPPPPPRPPPPRE i
DiSCIAiMEr & COPYIIBNT ...eentieieiieeie ettt st e e st e st e st e e et e e sab e e eabeesabeesabeesabeesaneenas i
BRI o (o] o] o =Y o} £ PRSP PRTUPN i
1. XIVIL DOIM — OVEIVIEW....ceeeeuuuniiiiineensssssssssimssmsssssssssissnnes 1
AdVantages Of XIMIL DOM ...cccuuiiiiiiiiieiiee ettt ettt ettt et s ebe e st e bt e e she e e bt e e sabeesaeeesabeeeneeesateesnneesabeennneens 1
Disadvantages Of XIMIL DOVccocuuieieiiiie e ettt e et e sttt e e e stte e e e e taee e staaeeesstaeesaassaeesnsaeeesasaeeeessaeesnnssasessseaaans 2
2. XML DOM = MOMEI ..cceiiiiiiiiiinnriiiiiiiiiinnnnneeiiiisisssnssesisissssssssssesssssssssssssssssssssssssssssessssssssssssnsessssssssssssnsanss 3
3. XIVIL DOM = NOAES ..ccevriiiiiiiiisnnneeniniisssssssssssssissssssssssesssasssssssssssnnsanss 5
4. XIVIL DOM — NOGE TrEE...uuuuuuueeriirisisssnns 7
5. XML DOM = IMEthOdS......ccceiiirimrriiiiiiiiissnnneniiiisissssnssesisissssssssssessssssssssssssessssssssssssssssssssssssssnssesssssssssssnnsanss 9
6. XIVIL DOM — LOQAINE cccevreeririrreeerreeeeeeeeeeeeeemmessesssessesssnns 11
o 1T =] SO PPPPP 11
LOAdiNg aNd Parsing XIML.....coouuieiieeiieeeteesitee ettt sttt ettt e s e e sat e e sab e e s at e e sabe e bt e e sabeesbeeesnbeebeeesnneeneas 12
CONTENT @S XIML fIl.cuereeiiee ittt e e e ettt e e e e e st a e e e e e e e e setbasaeeeeeesenabasaeeeeeesennnnsaeeeeeesensnrees 12
CoNtENt S XIMIL STIING coiieieiiiiicc e e e e e e e e e e e e e 14
7. XML DOM — TraVerISiNG...ccccetireremnrieieeiereennnsssssssssssnsssssssssssssnsssssssssssssnnssssssssssssnnssssssssssssnnnsssssssssssnnnnssssss 17
8. XML DOM — NaViBAtiON ...ciiereeeiiiiiiiiiiienniiiiiiieennnssisestineesnsssssssssssennsssssssssssssnnssssssssssssnnssssssssssssnnnssssssssans 20
DOM = PArENt INOGE ...ceeeiiiiieeiitee ettt ettt e ettt e sttt e e e sab e s ettt e e sabbte e e s beeessasteeesabbeeeenbeeesansaeeesabeeaennn 21
T A o 1 o TSR UPOTPTOPPRO 22
I 1 A 1311 o RO PO P TP PP SRR PPOPPTOPPTO 23
N =N o 1= P 24
VLo YU T o g = SRR 25
9. XIVIL DOM — ACCESSING ..uriirrrrnnunsssnniireensssssssismmssssssssssssmssns 27
ACCESSING NOUEBS .ot ettt e e e e e sttt e e e e e e s et taareeeeeeseaaataeeeaessassstaaseeeesasssssaesaeessannstaanseeseannes 27
EtEIEMENTSBYTAGNGIME () 1eeeiuriieieiiii it e ettt e ettt e e eetee e e st e e e e tte e e eabaeeesabaeeeestaeesaasaaaesnsaeaeasseeesansaneessseaaans 27
Traversing throUZN NOGEScii i et e e e e e e et e e e e e e s e s e taaeeeeeeesastaaeeaeseessnstaaneaaeas 28
NaVIgating TArOUZI NOUESccoeeieece e e e e e s et e e e e e s et t e e e e e e e s e arbaaeeeeesesnssaaneaaens 28
XML DOM OPERATIONS.....coiiiimimiemssnssesssssssssasssssssssasssssssssssssssssssssssasssssssssassssssnssasssnssnssnnssnsnnss 29
10. XIML DOM — Gt NOUEuuuueeereiiiiiiiisisneeeetisiissssssnssesssssssssssnssessssssssssssnssesssssssssssnssesssssssssssnnsesssssssssssnnnanns 30
GEEINOTE VAlUE . ettt e e ettt e e ettt e e st e e e e a bt e e s eabee e e sabbeeeeanbeeessasbeeesnbeeeeanbaeesnanee 31
GEE ALEIIDULE VAIUE et ettt et e e e st e e s st e e e s bt e e e s sabeeessabbeeesbbeeesnabaeesnanes 31
11. XML DOM — St NOGEcuuerriiiiiiiiiisunnneiiiissisisssseesssiisssssssssessssssssssssssesssssssssssssssessssssssssssnsssssssssssssnnssnss 33
Change Value OFf TEXE NOUE.....oii ittt e e s e e e s e e e ent e e e s ateeeessteeesenseeeesnteeeesnseeenannns 33
Change Value of AttribULE NOGEuuiiiiiiee et e e e e s e e st e e e e st e e esaeeeesnaeeeennraeesnnnes 35

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

12. XML DOM — Create NOGE ...cccciiiiiiiiiiiiiiiiiiiiiiiiniiriesesssses e sssss s s s s ss s s s s s s s s s s s s s ssssssssssssssesssssssssssssssssssssssnnnnnnns 37
Create NEW EJEMENT NOEccccueei e et e et e st e e e st e e e e ete e e seaeeeasataeesaaseaeesssaeeenstseeaanseeeesasseeeanssaeesannes 37
Create NEW TEXE NOTEoeieeiiiieceiiee e cttee e ettt e e etee e e stae e e et teeeeetaeeesabeeeasstaeaeasssseessseeeansssseaansseeessseeeansseeennnnes 38
Create NEW COMMENT NOUE........ooii ittt e et e e e e e e ebb e e e e e e e e eeebaaaeeaeeesensbataeeeaeesenssnsaeesaeesensnnees 40
Create NeW CDATA SECHION NOUE...........uuiiiee ettt ee ettt e e e e e et e e e e e e eeebabaeeeeeesesabataeeeaeesessnsseeeaeesennsnnees 42
Create NEW ALTIIDULE NOUEuiiiiee ettt e e ettt e e e ee et e e e e e e e sebateeeeeeeeeabaaaeeeaaesaassssaeeeaesseassnsaeeeaessensnrees 43

13. XML DOM = Add NOGE....cccuuueieeiireeinnnceeerireeennsseeesreeeenmsssssessesesnnssssssssssssnnssssssssssssnnnssssssssssssnnnsssssssssssnnnns 46
F=T o oY1 Ve [oY1 o) SRS RSNE 46
Ta T =T =< (o T =1 | SR 47
Lo Ty =T a0] =1 (S 49

14. XML DOM — Replace NOUEcceeiiiiiiiiiiiicccciciciiienennnnienessnes s ss s e s ss e s s s s s s s s s s s s s s s s s s e ssessssssssssssssssssansssnnnns 52
=T o =TT 0l o 1] Fo 1 | S S 52
FEPIACEDATA() 1uvvrerreerereitieeitie et e et e e rtte et eesteeebee e teeebee e aeeebeeeseeenseeaaseeenteeaseeenbeeenseeaabeeeaee e teeeseeetaeenraeane 54

15. XML DOM — RemMOVE NOAEceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiississsssisssssssssssssssnssnns 57
LYo NV =T oY1 o IR PRRPSRPROt 57
LYo N oY A A g oYU =T PRSPPIt 60

16. XML DOM — ClONE NOGEcceeeiiiiiiiieiiiiiiiieisissisissssssssessesssssssnnns 62
(ol [T o T=1 N o e 1= | PSSRSO 62

XML DOM OBJECTS....ciiitiiiininisemssnsemsssssesssssssssssssssssesssssssssssssssssssssssssassss sssssassssssnssasssnsssssssssnssnsss 64

17. XML DOM — NOde ODBjJECEcceiviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinsisssssssssssssssssnsssnssnns 65
F i ad] U =TSSP 65
LT 1= U 2 USRS 66
(ol Y1 o 1N\ o Yo 1T USSR URROE 68
LT € {01 o 11 o EP SRS 70
=1 1 Y1 o S 72
1o o= 1|\ F= T2 - 74
LoD Y1 o] 11 V-S5SSR 76
[T Yo L]\ F= T o= S 78
LT Yo L=l IV o TS 80
[TeTe [NV Y VTSP PURPNS 82
OWNEI D OCUMENT .. eeees 84
[0 T =T 011 Lo Yo [P PURPNS 86
[N VAo YUY] o] 1Y -SSP PURPNS 88
TEXECONTENT ettt e e e et e et et et et et et et et et et et et et et et et et et eteresetarerarerererareseraranans 90
1 oY LT IV o TSP 92
=Y d Yo Yo L3P 92
F= o o 11 o [T o USSR 95
ol [0 0 11\ Yo 1SS USRSRNE 97
CoOMPAreDOCUMENTPOSITION . i 99
- 1@ o1 1o |\ o e [y UUT S PURTN 102
[Ta T =Y a2 T=Y o o TS UUU RPN 104
D1 U1 L\ T g 1T o I ol S UUURUPTNE 106
1Y o T =111 Yo ISR 108
IOOKUPNGMESPACEURI ..ottt s e e e e e et e e e st e e e e st e e eeaseeeesnseeeessseeesanseeeesnseeeassseeanannes 110
100 (0T o] 20 =Y SRR 112

\tutorialspoint

SIMPLYEASYLEARMNINEG

18.

19.

20.

21.

22.

23.

24,

XML DOM

(01 g 1 =1 12O OO OO PO PPPRPPRTIN 114
FEMOVECRNIIT 1.t sttt se e st e e st e e st e e sabe e sabeesabaesabeesabaesabeesabaesabeesabaesaseesn 117
=T o] = 1ol 0l o 1] o SRRt 119
XML DOM — NOdeList OBJECEuueeriiiiiiiiiiiiiiiiiiiiiinreeiiissansee s ess e ssss e aass s e s s s 122
F AN g1 o U =TSP STRTTP 122
Object AtEribute - IENGLH ..ot 122
Y=Y d g Yoo [TP 124
(0] o =Tot f\Y/ L= g Vo o Bt =Y o o RSN 124
XML DOM — NamedNodeMap ODbjJECt.......ccceeiiiiiiiiiiiiiiiiiiiiiiiniienniseeeesseeessseesssss s ssssssss s s s sssssssessssssssssssnnns 126
LA a4 o TV =T OO PO PUPOT PR PPPRRTPROY 126
NamedNodeMap Object Property- l8NGLNoouvii it 126
=1 Vo T OO OO P USSP PPOPRPTIN 128
NamedNodeMap Object Method- getNamedItemcccooiiiiiiiiiei e 128
NamedNodeMap Object Method- getNamedItemMNSccuoiiiiiiiii e 130
NamedNodeMap Object Method- ITEM () ...ccciiiirieieieeieee ettt st sae e b e et eas 132
NamedNodeMap Object Method- removeNameditemcocviiiieiiiiinieee e 134
NamedNodeMap Object Method- removeNamedIteMNS............oooeiiiiieiiiee e e e 136
NamedNodeMap Object Method- SEtNAMEITEM.........viiiiiiee e et 138
NamedNodeMap Object Method- setNamedItEMNSc..uiiiiiieieiee e e et 141
XML DOM — DOMImplementation OBjJECtcccceeiiiiiiiiiiiiiiiiicieereeeeeeeeses s s e sese e e e e e e e e s e ssssssssssnenees 144
=14 Vo T O PSS USPTOPSPTIN 144
DOMImplementation Object Method- createdocumentcoovveriiiiiiiiniiene e 144
DOMImplementation Object Method- createdocumentc.cccoveeeiiiiiieiiiienieeee e 145
DOMImplementation Object Method- hasFeature.........ccoiieiiiiiiieie e 146
XML DOM — DocumentType ObBjJectccciiiiiiiiiiiiiiiiiiiiiiiiisssnnns 148
LA d A o TU T OO PUTORPR PPt 148
DocumentType Object AtLriDULE - NAMEuiiiii e e e e et e e e e e e saaraareeee s 148
DocumentType Object AttribULE - @NTITIES ...uuiiiii i e e serrar e e s 150
DocumentType Object Attribute - NOTAtIONcei i e e e s 152
DocumentType Object Attribute - PUDLCIAooiiiiee e e e e 153
DocumentType Object Attribute - SYSTEMI........cuviiiiiiiie e e e e e e e 155
DOM — ProcessingInstruction ODjJECtcccceviiiiiiiiiiiisiiiisiisiiiissns 157
ATEITOULES ettt et st e st e s a bt e et esa bt e e bt e s be e e bt e s be e s bt e s be e e bt e s beesneenane 157
Processinglnstruction Object Attribute- data.......ccccceeeiiiiiciier e et 157
Processinglnstruction Object Attribute- target......cccuvieiiii i e 160
DOM — ENtity ODjJECT.....cceeeiiiiiicceiecccirrrerreeccee st reernee e sse e s s e s e rnasssssessesennnssssssssesennnssssssssssesnnnssssssssssennnns 163
AT DULES ettt s bt e e e bttt e sttt e e e s bt e e e e a bt e e s ab b e e e s bt e e e e aa bt e e e e bbee e shbeeeeaabeeesenteeesanraeas 163
Entity Object Attribute- INPULENCOAINGvviiieiiee e e e e e e e e s anbaareeee s 163
Entity Object Attribute- NOtAtiONNGME........uiiiii e e e e e s e e s nbaareeee s 165
Entity Object Attribute - PUBIICIAooeeeeee e e e e e e et e e e ennaeas 167
Entity Object AtEribULe - SYSTEMIAcooi i e e e e e e e e e e st e e e ennteeeesnnneas 169
Entity Object Attribute- XMIENCOING.......viiiiiee et e e e e et e e e e e s na e e e e nteeeennnneas 170
Entity Object Attribute - XMIVEISION ..oc.eeiie e e e eea e e s e e s e neeeeesnnneas 172
XML DOM — Entity Reference ObjJectccccviiiiiiiiiiiiiiiiiiiiisssssssssssssssssssssssssnns 175

4

\tutorialspoint

SIMPLYEASYLEARMNINEG

25.

26.

27.

28.

29.

30.

31.

XML DOM

XML DOM — NOtation OBJECt...cccciiiiiiiiiiiiiiiiiiiiiiiiiinniinirinsnnesees ssssssssssssssssnsnnnnns 176
LA a4 o TV =T OO PRSP PO PO PPt 176
Notation Object Attribute - PUBIICID ...c...eiie e e e e et e e e e nra e e eennneas 176
Notation Object Attribute - SYSTEMIooiuiiiiiiiii e e e 178
(010 1V B 1 1= 4 =T o0 =Y o Y 180
(o o] 1<) o £ 1= T OO U PTUUOTTSP PP 180
Element Object Attribute - TagNameoiiiiiiieei e st s 180
=1 Vo T OO T USRS PPPTOPSRTIN 182
Element Object method - GETATLIIDULEcccuiei e eee e e e e et e e e e nraeas 184
Element Object Method - GEtATLIHDULENS........coo e e rre e e e e et e e s nnaeas 185
Element Object method - getAttIIDULENOE.oiiieiiiie e e et 187
Element Object Method - getAttribULENOAENScooceiiiie e e et 190
Element Object Method - getElementByTagNamMEecocviiiiiiiiiiiieeie ettt s 192
Element Object Method- getElementsByTagNameENSccuoiiiiiiieiiiienieee ettt 194
Element Object Method- hasAtHDULE.cooiiiiie e e 196
Element Object Method- hasAttHDULE.........coiiiiii e e 198
Element Object Method - remMOVEALLIIDULEcuviiieiiec et ree e st e e e ara e e eaaaeas 200
Element Object Method- remoVeALtHDULENSooiciiii e et 202
Element Object method - removeALtribULENOTEccceviiieiiee et 204
Element Object method - SETATLIIDULE........ccuvii et erree e e e e e e are e e eearaeas 206
Element Object Method - SELATLIDULENScooiiiieeee e et rae e et e e e ar e e e eaaaeas 209
Element Object method - SEtAtLHDULENOEcocueiiiiiiiiee e 211
Element Object Method - setAttribUtENOAENScouiiiiiiiie e 213
XML DOM — Attribute ObjJectccceviiiiiiiiiiiiiiiii s s s s s ee e 216
F A a1 o TU) =P TPR 216
Attribute ObjJect AtLrIDULE - NAME....iii e e e et e e et e e s sabe e e e s ataeeeeataeeeeanaeas 216
Attribute Object Attribute - SPECITIEU.......cii e e et e e e e earaeas 218
Attribute ObJect AtErDULE - VAlUEoooeeeee et e e et e e et e e e st e e e e atae e eearaeas 220
Attribute Object Attribute - OWNEIrEIEMENT ...ccciiieeeee e e e e e s 222
Attribute ObJect ATEHDULE - iSIA ...uiiieii e e e e e e s e tbe e e e e e e e santrareaee s 225
XML DOM — CDATASECtiON ODbjJECtcoevireiriiiiiiiiinnriiiiissssneseesssssssssnssee s ssssse s ssssssssssnssssssssses 227
XML DOM — Comment ObjJECtccceiiiiiiiiiiiiiiiiiiiiiiiiiiiisssssssssssssssss s s s s s s ssssssssssssssssssssssssssnnns 228
XML DOM — XMLHttpRequest ODJectccciiiiiiiiiiiiiiiiiiiiiissssssssssssssssss s ssssssssssssssssnns 229
=1 Vo T OO T T PP PRSP PPPTOPRPTIN
Attributes
Retrieve specific information of @ resource fileooociiiiioiei e e 232
XML DOM — DOMEXCEPLION ODJECEcceueeiiiiiiiiiieiiiiiiiireeneesseseeseenessssessessesnnssssssssssesnnnsssssssssssnnnnsssnns 235
e o7 o= (= E PSP TPRON 235
[oY g IV 1= PRON 235
5

\tutorialspoint

SIMPLYEASYLEARMNINEG

1. XML DOM —QOverview

The Document Object Model (DOM) is a W3C standard. It defines a standard for accessing
documents like HTML and XML.

Definition of DOM as put by the W3C is:

The Document Object Model (DOM) is an application programming interface
(API) for HTML and XML documents. It defines the logical structure of
documents and the way a document is accessed and manipulated.

DOM defines the objects and properties and methods (interface) to access all XML
elements. It is separated into 3 different parts / levels:

e Core DOM - standard model for any structured document
¢ XML DOM - standard model for XML documents
¢ HTML DOM - standard model for HTML documents

XML DOM is a standard object model for XML. XML documents have a hierarchy of
informational units called nodes; DOM is a standard programming interface of describing
those nodes and the relationships between them.

As XML DOM also provides an API that allows a developer to add, edit, move or remove
nodes at any point on the tree in order to create an application.

Following is the diagram for the DOM structure. The diagram depicts that parser evaluates
an XML document as a DOM structure by traversing through each node.

XMLDocument

Advantages of XML DOM

The following are the advantages of XML DOM.

e XML DOM is language and platform independent.

¢ XML DOM is traversable - Information in XML DOM is organized in a hierarchy

which allows developer to navigate around the hierarchy looking for specific
information.

1

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

¢ XML DOM is modifiable - It is dynamic in nature providing the developer a scope
to add, edit, move or remove nodes at any point on the tree.

Disadvantages of XML DOM

e It consumes more memory (if the XML structure is large) as program written once
remains in memory all the time until and unless removed explicitly.

e Due to the extensive usage of memory, its operational speed compared to SAX is
slower.

‘ tutorialspoint

PLYEASYLEARMNINEG

2. XML DOM — Model

Now that we know what DOM means, let's see what a DOM structure is. A DOM document
is a collection of nodes or pieces of information, organized in a hierarchy. Some types
of nodes may have child nodes of various types and others are leaf nodes that cannot have
anything under them in the document structure. Following is a list of the node types, with
a list of node types that they may have as children:

e Document -- Element (maximum of one), Processinglnstruction, Comment,
DocumentType (maximum of one)

e DocumentFragment -- Element, ProcessingInstruction, Comment, Text,
CDATASection, EntityReference

e EntityReference -- Element, ProcessinglInstruction, Comment, Text,
CDATASection, EntityReference

e Element -- Element, Text, Comment, Processinglnstruction, CDATASection,
EntityReference

e Attr -- Text, EntityReference

e ProcessinglInstruction -- No children
e Comment -- No children

e Text -- No children

e CDATASection -- No children

e Entity -- Element, ProcessinglInstruction, Comment, Text, CDATASection,
EntityReference

e Notation -- No children

Example

Consider the DOM representation of the following XML document node.xml.

<?xml version="1.0"?>
<Company>
<Employee category="technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
</Employee>
<Employee category="non-technical">
<FirstName>Taniya</FirstName>

<LastName>Mishra</LastName>

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<ContactNo>1234667898</ContactNo>
</Employee>

</Company>

The Document Object Model of the above XML document would be as follows:

From the above flowchart, we can infer:

e Node object can have only one parent node object. This occupies the position
above all the nodes. Here it is Company.

e The parent node can have multiple nodes called the child nodes. These child nodes
can have additional nodes called the attribute nodes. In the above example, we
have two attribute nodes — Technical and Non-technical. The attribute node is not
actually a child of the element node, but is still associated with it.

e These child nodes in turn can have multiple child nodes. The text within the nodes
is called the text node.

e The node objects at the same level are called as siblings.

e The DOM identifies:
o the objects to represent the interface and manipulate the document.

o the relationship among the objects and interfaces.

SIMPLYEASYLEARMNINEG

A tutorialspoint

3. XML DOM — Nodes

In this chapter we will study about the XML DOM Nodes. Every XML DOM contains the
information in hierarchical units called Nodes and the DOM describes these nodes and the
relationship between them.

Node Types

The following flowchart shows all the node types:

=

] [] []

] [

The most common types of nodes in XML are:

Document Node: Complete XML document structure is a document node.

Element Node: Every XML element is an element node. This is also the only type
of node that can have attributes.

Attribute Node: Each attribute is considered an attribute node. It contains
information about an element node, but is not actually considered to be children of
the element.

Text Node: The document texts are considered as text node. It can consist of more
information or just white space.

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Some less common types of nodes are:

CData Node: This node contains information that should not be analyzed by the
parser. Instead, it should just be passed on as plain text.

Comment Node: This node includes information about the data, and is usually
ignored by the application.

Processing Instructions Node: This node contains information specifically aimed
at the application.

Document Fragments Node
Entities Node
Entity reference nodes

Notations Node

' tutorialspoint

PLYEASYLEARMNINEG

4. XMLDOM — Node Tree

In this chapter, we will study about the XML DOM Node Tree. In an XML document, the
information is maintained in hierarchical structure; this hierarchical structure is referred
to as the Node Tree. This hierarchy allows a developer to navigate around the tree looking
for specific information, thus nodes are allowed to access. The content of these nodes can
then be updated.

The structure of the node tree begins with the root element and spreads out to the child
elements till the lowest level.

Example

Following example demonstrates a simple XML document, whose node tree is structure is
shown in the diagram below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
</Employee>

</Company>

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

As can be seen in the above example whose pictorial representation (of its DOM) is as
shown below:

e The topmost node of a tree is called the root. The root node is <Company> which
in turn contains the two nodes of <Employee>. These nodes are referred to as child
nodes.

e The child node <Employee> of root node <Company>, in turn consists of its own
child node (<FirstName>, <LastName>, <ContactNo>).

e The two child nodes, <Employee> have attribute values Technical and Non-
Technical, are referred as attribute nodes.

e The text within every node is called the text node.

SIMPLYEASYLEARMNINEG

A tutorialspoint

5. XML DOM - Methods

DOM as an API contains interfaces that represent different types of information that can
be found in an XML document, such as elements and text. These interfaces include the
methods and properties necessary to work with these objects. Properties define the
characteristic of the node whereas methods give the way to manipulate the nodes.

Following table lists the DOM classes and interfaces:

Interface

Description

DOMImplementation

It provides a number of methods for performing operations
that are independent of any particular instance of the
document object model.

It is the "lightweight" or "minimal" document object, and it (as

DocumentFragment the superclass of Document) anchors the XML/HTML tree in a
full-fledged document.
It represents the XML document's top-level node, which

Document provides access to all the nodes in the document, including the
root element.

Node It represents XML node.

Nodelist It represents a read-only list of Node objects.

NamedNodeMap It represents collections of nodes that can be accessed by
name.

Data It extends Node with a set of attributes and methods for
accessing character data in the DOM.

Attribute It represents an attribute in an Element object.

Element It represents the element node. Derives from Node.

Text It represents the text node. Derives from CharacterData.

Comment It represents the comment node. Derives from CharacterData.

ProcessingInstruction

It represents a "processing instruction". It is used in XML as a
way to keep processor-specific information in the text of the
document.

CDATA Section

It represents the CDATA Section. Derives from Text.

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Entity It represents an entity. Derives from Node.

This represent an entity reference in the tree. Derives from

EntityReference Node.

We will be discussing methods and properties of each of the above Interfaces in their
respective chapters.

10

\ tutorialspoint

PLYEASYLEARMNINEG

6. XML DOM — Loading

In this chapter, we will study about XML Loading and Parsing.

In order to describe the interfaces provided by the API, the W3C uses an abstract language
called the Interface Definition Language (IDL). The advantage of using IDL is that the
developer learns how to use the DOM with his or her favorite language and can switch
easily to a different language.

The disadvantage is that, since it is abstract, the IDL cannot be used directly by Web
developers. Due to the differences between programming languages, they need to have
mapping — or binding — between the abstract interfaces and their concrete languages.
DOM has been mapped to programming languages such as Javascript, JScript, Java, C,
C++, PLSQL, Python, and Perl.

In the following sections and chapters, we will be using Javascript as our programming
language to load XML file.

Parser

A parser is a software application that is designed to analyze a document, in our case XML
document and do something specific with the information. Some of the DOM based parsers
are listed in the following table:

Parser Description

JAXP Sun Microsystem’s Java API for XML Parsing (JAXP)

XML4] IBM’s XML Parser for Java (XML41J)

msxml :I.igrosoft’s XML parser (msxml) version 2.0 is built-into Internet Explorer
4DOM 4DOM is a parser for the Python programming language

XML::DOM | XML::DOM is a Perl module to manipulate XML documents using Perl

Xerces Apache’s Xerces Java Parser

In a tree-based API like DOM, the parser traverses the XML file and creates the
corresponding DOM objects. Then you can traverse the DOM structure back and forth.

11

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Loading and Parsing XML

While loading an XML document, the XML content can come in two forms:
e Directly as XML file
e As XML string

Content as XML file

Following example demonstrates how to load XML (node.xml) data using Ajax and
Javascript when the XML content is received as an XML file. Here, the Ajax function gets
the content of an xml file and stores it in XML DOM. Once the DOM object is created, it is

then parsed.

<!DOCTYPE html>

<html>
<body>

<div>
FirstName:

LastName:

ContactNo:

Email:

</div>

<script>

//if browser supports XMLHttpRequest
if (window.XMLHttpRequest)

{// Create an instance of XMLHttpRequest object. code for IE7+,
Firefox, Chrome, Opera, Safari

xmlhttp = new XMLHttpRequest();
}
else
{// code for IE6, IE5S

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

// sets and sends the request for calling "node.xml"

xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();

// sets and returns the content as XML DOM
xmlDoc=xmlhttp.responseXML;

//parsing the DOM object

' tutorialspoint

PLYEASYLEARMNINEG

12

https://www.tutorialspoint.com/dom/node.xml

XML DOM

document.getElementById("FirstName").innerHTML=
xmlDoc.getElementsByTagName("FirstName")[0].childNodes[@].nodeValue;
document.getElementById("LastName").innerHTML=
xmlDoc.getElementsByTagName("LastName")[©@].childNodes[@].nodeValue;
document.getElementById("ContactNo").innerHTML=

xmlDoc.getElementsByTagName("ContactNo")[@].childNodes[@].nodeValue;
document.getElementById("Email").innerHTML=
xmlDoc.getElementsByTagName("Email")[@].childNodes[@].nodeValue;
</script>
</body>
</html>

node.xml

<Company>
<Employee category="Technical" id="firstelement">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

\tutorialspoint

SIMPLYEASYLEARMNINEG

13

XML DOM

Most of the details of the code are in the script code.

Internet Explorer uses the ActiveXObject("Microsoft. XMLHTTP") to create an
instance of XMLHttpRequest object, other browsers use the
XMLHttpRequest() method.

The responseXML transforms the XML content directly in XML DOM.

Once the XML content is transformed into JavaScript XML DOM, you can access any
XML element by using the JS DOM methods and properties. We have used the DOM
properties such as childNodes, nodeValue and DOM methods such as
getElementsById(ID), getElementsByTagName(tags_name).

Execution

Save this file as loadingexample.html and open it in your browser. You will receive the
following output:

FirstName: Tanmay
LastName: Patil

ContactNo: 1234567890
Email: tanmaypatil@xyz.com|

Content as XML string

Following example demonstrates how to load XML data using Ajax and Javascript when
XML content is received as XML file. Here, the Ajax function gets the content of an xml file
and stores it in XML DOM. Once the DOM object is created, it is then parsed.

<!DOCTYPE html>
<html>

<head>

<script>
// loads the xml string in a dom object
function loadXMLString(t)
{
// for non IE browsers
if (window.DOMParser)
{
// create an instance for xml dom object
parser=new DOMParser();

xmlDoc=parser.parseFromString(t, "text/xml");

14

‘ tutorialspoint

PLYEASYLEARMNINEG

XML DOM

// code for IE

else

{

// create an instance for xml dom object
xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

xmlDoc.async=false;

xmlDoc.loadXML(t);
}

return xmlDoc;
}
</script>
</head>
<body>
<script>
// a variable with the string
var text="<Employee>";
text=text+"<FirstName>Tanmay</FirstName>";
text=text+"<LastName>Patil</LastName>";
text=text+"<ContactNo>1234567890</ContactNo>";
text=text+"<Email>tanmaypatil@xyz.com</Email>";

text=text+"</Employee>";

// calls the loadXMLString() with "text" function and store the xml dom in
a variable

var xmlDoc=loadXMLString(text);

//parsing the DOM object
y=xmlDoc.documentElement.childNodes;

for (i=0;i<cy.length;i++)

{
document.write(y[i].childNodes[@].nodeValue);
document.write("
");
}
</script>
</body>

</html>

Most of the details of the code are in the script code.

\tutorialspoint

SIMPLYEASYLEARMNINEG

15

XML DOM

e Internet Explorer uses the ActiveXObject("Microsoft. XMLDOM") to load XML data
into a DOM object, other browsers use the DOMParser() function
and parseFromString(text, 'text/xml') method.

e The variable text shall contain a string with XML content.

e Once the XML content is transformed into JavaScript XML DOM, you can access any
XML element by using JS DOM methods and properties. We have used DOM
properties such as childNodes, nodeValue.

Execution

Save this file as loadingexample.html and open it in your browser. You will see the
following output:

Tanmay

Patil

1234567890
tanmaypatil@xyz.com

Now that we saw how the XML content transforms into JavaScript XML DOM, you can now
access any XML element by using the XML DOM methods.

16

\ tutorialspoint

PLYEASYLEARMNINEG

/. XML DOM — Traversing

In this chapter, we will discuss XML DOM Traversing. We studied in the previous
chapter how to load XML document and parse the thus obtained DOM object. This parsed
DOM object can be traversed. Traversing is a process in which looping is done in a
systematic manner by going across each and every element step by step in a node tree.

Example

The following example (traverse_example.htm) demonstrates DOM traversing. Here we
traverse through each child node of <Employee> element.

<!DOCTYPE html>

<html>

<style>

table,th,td

{

border:1px solid black;

border-collapse:collapse

}
</style>
<body>
<div id="ajax_xml">
</div>
<script>

//if browser supports XMLHttpRequest
if (window.XMLHttpRequest)

{// Create an instance of XMLHttpRequest object. code for IE7+,
Firefox, Chrome, Opera, Safari

var xmlhttp = new XMLHttpRequest();
}
else
{// code for IE6, IE5
var xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

// sets and sends the request for calling "node.xml"
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();

17

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

// sets and returns the content as XML DOM
var xml_dom=xmlhttp.responseXML;
// this variable stores the code of the html table

var html_tab = '<table id="id_tabel" align="center"><tr><th>Employee
Category</th><th>FirstName</th><th>LastName</th><th>ContactNo</th><th>Email</th
></tr>';

var arr_employees = xml_dom.getElementsByTagName("Employee");
// traverses the "arr_employees" array

for(var i=0; i<arr_employees.length; i++) {

var employee_cat = arr_employees[i].getAttribute('category');

// gets the value of 'category' element of current "Element" tag

// gets the value of first child-node of 'FirstName' element of current
"Employee" tag

var employee_firstName =
arr_employees[i].getElementsByTagName('FirstName')[©].childNodes[@].nodeValue;

// gets the value of first child-node of 'LastName' element of current
"Employee" tag

var employee_lastName =
arr_employees[i].getElementsByTagName('LastName')[@].childNodes[@].nodeValue;

// gets the value of first child-node of 'ContactNo' element of current
"Employee" tag

var employee_contactno =
arr_employees[i].getElementsByTagName('ContactNo')[0@].childNodes[@].nodeValue;

// gets the value of first child-node of 'Email' element of current
"Employee" tag

var employee_email =
arr_employees[i].getElementsByTagName('Email’')[0@].childNodes[@].nodeValue;

// adds the values in the html table

html_tab += '<tr><td>'+ employee_cat+ '</td><td>'+ employee_firstName+
'</td><td>'+ employee_lastName+ '</td><td>'+ employee_contactno+ '</td><td>'+
employee_email+ '</td></tr>';

}

html_tab += '</table>’;
// adds the html table in a html tag, with id="ajax_xml"
document.getElementById('ajax_xml').innerHTML = html_tab;

</script>

18

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

</body>

</html>

This code loads node.xml.
The XML content is transformed into JavaScript XML DOM object.

The array of elements (with tag Element) using the method
getElementsByTagName() is obtained.

Next, we traverse through this array and display the child node values in a table.

Execution

Save this file as traverse_example.htm/ on the server path (this file and node.xml should
be on the same path in your server). You will receive the following output:

Employee Category|FirstName|LastName| ContactNo Email
Technical Tanmay |Patil 1234567890 tanmaypatil@xyz.com
Non-Technical Taniya Mishra [1234667898[taniyamishra@xyz.com
Management Tanisha [Sharma [1234562350[tanishasharma@xyz.com

19

SIMPLYEASYLEARMNINEG

@j’r tutorialspoint

https://www.tutorialspoint.com/dom/node.xml

8. XML DOM — Navigation

Until now we studied DOM structure, how to load and parse XML DOM object and traverse
through the DOM objects. Here we will see how we can navigate between nodes in a DOM
object. The XML DOM consist of various properties of the nodes which help us navigate
through the nodes, such as:

parentNode
childNodes
firstChild
lastChild
nextSibling

previousSibling

Following is a diagram of a node tree showing its relationship with the other nodes.

First Child
Next
Sibling
Child
Nodes
Previous
Sibling
Last Child
20

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

DOM - Parent Node

This property specifies the parent node as a node object.

Example

The following example (navigate_example.htm) parses an XML document (node.xml) into
an XML DOM object. Then the DOM object is navigated to the parent node through the
child node:

<!DOCTYPE html>

<html>
<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;
var y=xmlDoc.getElementsByTagName("Employee")[0];
document.write(y.parentNode.nodeName);
</script>
</body>
</html>

As you can see in the above example, the child node Employee navigates to its parent
node.

Execution

Save this file as navigate_example.html on the server path (this file and node.xml should
be on the same path in your server). In the output, we get the parent node
of Employee, i.e., Company.

21

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

First Child

XML DOM

This property is of type Node and represents the first child name present in the NodelList.

Example

The following example (first_node_example.htm) parses an XML document (node.xml)
into an XML DOM object, then navigates to the first child node present in the DOM object.

<IDOCTYPE html>
<html>
<body>
<script>
if (window.XMLHttpRequest)

{
xmlhttp

new XMLHttpRequest();
¥

else

{

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xmlhttp.open("GET","/dom/node.xml",false);

xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

function get_firstChild(p)

{
a=p.firstChild;
while (a.nodeType!=1)
{
a=a.nextSibling;
}
return a;
}

var firstchild =
get firstChild(xmlDoc.getElementsByTagName("Employee")[0]);

document.write(firstchild.nodeName);
</script>
</body>
</html>

\tutorialspoint

SIMPLYEASYLEARMNINEG

22

https://www.tutorialspoint.com/dom/node.xml

XML DOM

e Function get firstChild(p) is used to avoid the empty nodes. It helps to get the
firstChild element from the node list.

o x=get_firstChild(xmlDoc.getElementsByTagName("Employee")[0]) fetche
s the first child node for the tag name Employee.

Execution

Save this file as first_node_example.htm on the server path (this file and node.xml should
be on the same path in your server). In the output, we get the first child node
of Employee i.e. FirstName.

Last Child

This property is of type Node and represents the last child name present in the NodelList.

Example

The following example (last_node_example.htm) parses an XML document (node.xml) into
an XML DOM object, then navigates to the last child node present in the xml DOM object.

<IDOCTYPE html>

<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

function get_lastChild(p)

{

a=p.lastChild;

while (a.nodeType!=1)

{

a=a.previousSibling;
}
23
tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

XML DOM

return a;

}

var
lastchild=get_lastChild(xmlDoc.getElementsByTagName("Employee")[0]);

document.write(lastchild.nodeName);
</script>
</body>
</html>

Execution

Save this file as last_node_example.htm on the server path (this file and node.xml should
be on the same path in your server). In the output, we get the last child node
of Employee, i.e., Email.

Next Sibling

This property is of type Node and represents the next child, i.e., the next sibling of the
specified child element present in the NodelList.

Example

The following example (nextSibling_example.htm) parses an XML document (node.xml)
into an XML DOM object which navigates immediately to the next node present in the xml
document.

<!DOCTYPE html>
<body>
<script>

if (window.XMLHttpRequest)

{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

function get nextSibling(p)

24

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

{
a=p.nextSibling;
while (a.nodeType!=1)
{
a=a.nextSibling;
}
return a;
}
var

nextsibling=get_nextSibling(xmlDoc.getElementsByTagName("FirstName")[0]);
document.write(nextsibling.nodeName);
</script>
</body>
</html>

Execution

Save this file as nextSibling_example.htm on the server path (this file and node.xml
should be on the same path in your server). In the output, we get the next sibling node
of FirstName, i.e., LastName.

Previous Sibling

This property is of type Node and represents the previous child, i.e., the previous sibling
of the specified child element present in the NodelList.

Example

The following example (previoussibling_example.htm) parses an XML document
(node.xml) into an XML DOM object, then navigates the before node of the last child node
present in the xml document.

<!DOCTYPE html>
<body>
<script>

if (window.XMLHttpRequest)

{
xmlhttp = new XMLHttpRequest();
}
else
{
25
tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

function get_previousSibling(p)

{
a=p.previousSibling;
while (a.nodeType!=1)
{
a=a.previousSibling;
}
return a;
}

prevsibling=get previousSibling(xmlDoc.getElementsByTagName("Email")[0]);
document.write(prevsibling.nodeName);
</script>
</body>
</html>

Execution

Save this file as previoussibling_example.htm on the server path (this file and node.xml
should be on the same path in your server). In the output, we get the previous sibling

node of Email, i.e., ContactNo.

‘ tutorialspoint

PLYEASYLEARMNINEG

26

https://www.tutorialspoint.com/dom/node.xml

9. XML DOM — Accessing

In this chapter, we will study about how to access the XML DOM nodes which are
considered as the informational units of the XML document. The node structure of the XML
DOM allows the developer to navigate around the tree looking for specific information and
simultaneously access the information.

Accessing Nodes

Following are the three ways in which you can access the nodes:
e By using the getElementsByTagName () method
e By looping through or traversing through nodes tree

e By navigating the node tree, using the node relationships

getElementsByTagName ()

This method allows accessing the information of a node by specifying the node name. It
also allows accessing the information of the Node List and Node List Length.

Syntax
The getElementByTagName() method has the following syntax:

node.getElementByTagName("tagname");

Where,
e node: is the document node.

e tagname: holds the name of the node whose value you want to get.

Example

Following is a simple program which illustrates the wusage of method
getElementByTagName.

<IDOCTYPE html>
<html>
<body>
<div>
FirstName:

LastName:

Category:

27

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</div>
<script>
if (window.XMLHttpRequest)
{// code for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp = new XMLHttpRequest();
}
else
{// code for IE6, IE5
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

document.getElementById("FirstName").innerHTML=
xmlDoc.getElementsByTagName("FirstName")[0].childNodes[@].nodeValue;
document.getElementById("LastName").innerHTML=
xmlDoc.getElementsByTagName("LastName")[©@].childNodes[@].nodeValue;
document.getElementById("Employee").innerHTML=
xmlDoc.getElementsByTagName("Employee"”)[0].attributes[0].nodeValue;

</script>
</body>
</html>

e In the above example, we are accessing the information of the nodes
FirstName, LastName and Employee.

e xmlDoc.getElementsByTagName("FirstName")[0].childNodes[0].nodeValue, This
line accesses the wvalue for the «child node FirstName using the
getElementByTagName() method.

e xmlDoc.getElementsByTagName("Employee")[0].attributes[0].nodeValue; This
line accesses the attribute value of the node Employee getElementByTagName()
method.

Traversing through Nodes

This is covered in the chapter DOM Traversing with examples.

Navigating Through Nodes

This is covered in the chapter DOM Navigation with examples.

28

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM Operations

@tvteriﬂlsg?fnﬁ

XML DOM

29

10. XML DOM — Get Node

In this chapter, we will study about how to get the node value of a XML DOM object. XML
documents have a hierarchy of informational units called nodes. Node object has a
property nodeValue, which returns the value of the element.

In the following sections, we will discuss:
e Getting node value of an element
e Getting attribute value of a node

The node.xml used in all the following examples is as below:

<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

30

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Get Node Value

The method getElementsByTagName() returns a NodeList of all the Elements in document
order with a given tag name.

Example

The following example (getnode_example.htm) parses an XML document (node.xml) into
an XML DOM object and extracts the node value of the child node Firstname (index at 0):

<!DOCTYPE html>
<html>
<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc = xmlhttp.responseXML;
x = xmlDoc.getElementsByTagName('FirstName')[9]
y = x.childNodes[9];
document.write(y.nodeValue);
</script>
</body>
</html>
Execution

Save this file as getnode_example.htm on the server path (this file and node.xml should
be on the same path in your server). In the output, we get the node value as Tanmay.

Get Attribute Value

Attributes are part of the XML node elements. A node element can have multiple unique
attributes. Attribute gives more information about XML node elements. To be more precise,
they define properties of the node elements. An XML attribute is always a name-value
pair. This value of the attribute is called the attribute node.

31

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

The getAttribute() method retrieves an attribute value by element name.

Example

The following example (get_attribute_example.htm) parses an XML document (node.xml)
into an XML DOM object and extracts the attribute value of the category Employee (index
at 2):

<!DOCTYPE html>
<html>
<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;
x = xmlDoc.getElementsByTagName('Employee')[2];
document.write(x.getAttribute('category'));
</script>
</body>
</html>
Execution

Save this file as get attribute_example.htm on the server path (this file and node.xml
should be on the same path in your server). In the output, we get the attribute value as
Management.

32

' tutorialspoint

PLYEASYLEARMNINEG

11. XML DOM — Set Node

In this chapter, we will study about how to change the values of nodes in an XML DOM
object. Node value can be changed as follows:

var value = node.nodeValue;

If node is an Attribute then the value variable will be the value of the attribute; if node is
a Text node it will be the text content; if node is an Element it will be null.

Following sections will demonstrate the node value setting for each node type (attribute,
text node and element).

The node.xml used in all the following examples is as below:

<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Change value of Text Node

When we say the change value of Node element we mean to edit the text content of an
element (which is also called the text node). Following example demonstrates how to
change the text node of an element.

33

tutorialspoint

SIMPLYEASYLEARMNINEG

Example

XML DOM

The following example (set_text node_example.htm) parses an XML document
(node.xml) into an XML DOM object and change the value of an element's text node. In

this case, Email of each Employee to support@xyz.com and print the values.

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName("Email");

for(i =0 ;i<x.length;i++){

x[i].childNodes[©].nodeValue = "support@xyz.com";
document.write(i+') ');
document.write(x[i].childNodes[@].nodeValue);

document.write('
"');

‘ tutorialspoint

PLYEASYLEARMNINEG

34

https://www.tutorialspoint.com/dom/node.xml

XML DOM

</script>
</body>
</html>

Execution

Save this file as set_text_node_example.htm on the server path (this file and node.xml
should be on the same path in your server). You will receive the following output:

@) support@xyz.com
1) support@xyz.com
2) support@xyz.com

Change Value of Attribute Node

The following example demonstrates how to change the attribute node of an element.

Example

The following example (set_attribute_example.htm) parses an XML document (node.xml)
into an XML DOM object and changes the value of an element's attribute node. In this
case, the Category of each Employee to admin-0, admin-1, admin-2 respectively and
print the values.

<IDOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xhttp.open("GET",filename,false);
xhttp.send();

return xhttp.responseXML;

35

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

XML DOM

</script>
</head>
<body>

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

x = xmlDoc.getElementsByTagName("Employee");

for(i = @ ;icx.length;i++){

newcategory = x[i].getAttributeNode('category');
newcategory.nodeValue = "admin-"+1i;

document.write(i+') ');
document.write(x[i].getAttributeNode('category').nodeValue);

document.write('
");

</script>
</body>
</html>

Execution

Save this file as set _node_attribute_example.htm on the server path (this file and
node.xml should be on the same path in your server). The result would be as below:

@) admin-0
1) admin-1
2) admin-2

36

‘ tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

12. XML DOM — Create Node

In this chapter, we will discuss how to create new nodes using a couple of methods of the
document object. These methods provide a scope to create new element node, text node,
comment node, CDATA section node and attribute node. If the newly created node already
exists in the element object, it is replaced by the new one. Following sections demonstrate
this with examples.

Create new Element node

The method createElement() creates a new element node. If the newly created element
node exists in the element object, it is replaced by the new one.

Syntax

Syntax to use the createElement() method is as follows:

var_name = xmldoc.createElement("tagname");

Where,

e var_name: is the user-defined variable name which holds the name of new
element.

e ("tagname"): is the name of new element node to be created.

Example

The following example (createnewelement_example.htm) parses an XML document
(node.xml) into an XML DOM object and creates a new element node PhoneNo in the XML
document.

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

37

tutorialspoint

SIMPLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

}
xhttp.open("GET",filename,false);

xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");

new_element = xmlDoc.createElement("PhoneNo");

X = xmlDoc.getElementsByTagName("FirstName")[0];
x.appendChild(new_element);

document.write(x.getElementsByTagName("PhoneNo")[0].nodeName);
</script>
</body>
</html>

o new_element = xmlDoc.createElement("PhoneNo"); creates the new element node
<PhoneNo>

e Xx.appendChild(new_element); x holds the name of the specified child node
<FirstName> to which the new element node is appended.

Execution

Save this file as createnewelement_example.htm on the server path (this file and
node.xml should be on the same path in your server). In the output, we get the attribute
value as PhoneNlNo.

Create new Text node

The method createTextNode() creates a new text node.

Syntax

Syntax to use createTextNode() is as follows:

var_name=xmldoc.createTextNode("tagname");

38

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

Where,

e var_name: it is the user-defined variable name which holds the name of the new
text node.

e ("tagname”): within the parenthesis is the name of new text node to be created.

Example

The following example (createtextnode_example.htm) parses an XML document
(node.xml) into an XML DOM object and creates a new text node Im new text node in the
XML document.

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");
create_e = xmlDoc.createElement("PhoneNo");
create_t = xmlDoc.createTextNode("Im new text node");

create_e.appendChild(create_t);

x = xmlDoc.getElementsByTagName("Employee")[0];

39

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

Xx.appendChild(create_e);

document.write(" PhoneNO: ");

document.write(x.getElementsByTagName("PhoneNo")[@].childNodes[@].nodeValue);
</script>
</body>
</html>

Details of the above code are as below:

e create_e = xmlDoc.createElement("PhoneNo"); creates a new element
<PhoneNo>.

e create_t = xmlDoc.createTextNode("Im new text node"); creates a new text
node "Im new text node".

e x.appendChild(create_e),; the text node, "Im new text node" is appended to the
element, <PhoneNo>.

e document.write(x.getElementsByTagName("PhoneNo")[0].childNodes[0].nodeVal
ue),; writes the new text node value to the element <PhoneNo>.

Execution

Save this file as createtextnode_example.htm on the server path (this file and node.xml
should be on the same path in your server). In the output, we get the attribute value as
i.e. PhoneNO: Im new text node.

Create new Comment node

The method createComment() creates a new comment node. Comment node is included
in the program for the easy understanding of the code functionality.

Syntax

Syntax to use createComment() is as follows:

var_name = xmldoc.createComment("tagname");

Where:

e var_name: is the user-defined variable name which holds the name of new
comment node.

e ("tagname”): is the name of the new comment node to be created.

Example

The following example (createcommentnode_example.htm) parses an XML document
(node.xml) into an XML DOM object and creates a new comment node, "Company is the
parent node” in the XML document.

40

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");
create_comment = xmlDoc.createComment("Company is the parent node");
x = xmlDoc.getElementsByTagName("Company")[0];
x.appendChild(create_comment);
document.write(x.lastChild.nodeValue);
</script>
</body>
</html>

In the above example:

e create_comment=xmlIDoc.createComment("Company is
— creates a specified comment line.

' tutorialspoint

PLYEASYLEARMNINEG

the parent

node")

41

XML DOM

e x.appendChild(create_comment) — In this line, 'x” holds the name of the element
<Company> to which the comment line is appended.

Execution

Save this file as createcommentnode_example.htm on the server path (this file and the
node.xml should be on the same path in your server). In the output, we get the attribute
value as Company is the parent node .

Create New CDATA Section Node

The method createCDATASection() creates a new CDATA section node. If the newly
created CDATA section node exists in the element object, it is replaced by the new one.

Syntax

Syntax to use createCDATASection() is as follows:

var_name = xmldoc.createCDATASection("tagname");

Where,

e var_name: is the user-defined variable name which holds the name of the new
CDATA section node.

e ("tagname"): is the name of new CDATA section node to be created.

Example

The following example (createcdatanode_example.htm) parses an XML document
(node.xml) into an XML DOM object and creates a new CDATA section node, "Create
CDATA Example" in the XML document.

<IDOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{

if (window.XMLHttpRequest)
{

xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{

xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

42
' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

XML DOM

xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

create_CDATA = xmlDoc.createCDATASection("Create CDATA Example");

x = xmlDoc.getElementsByTagName("Employee")[0];
X.appendChild(create_CDATA);
document.write(x.lastChild.nodeVvalue);
</script>
</body>
</html>

In the above example:

e create_ CDATA=xmlIDoc.createCDATASection("Create CDATA Example") — creates
a new CDATA section node, "Create CDATA Example"”

e x.appendChild(create_CDATA) — here, x holds the specified element <Employee>
indexed at 0 to which the CDATA node value is appended.

Execution

Save this file as createcdatanode example.htm on the server path (this file and node.xml
should be on the same path in your server). In the output, we get the attribute value as
Create CDATA Example.

Create new Attribute node

To create a new attribute node, the method setAttributeNode() is used. If the newly
created attribute node exists in the element object, it is replaced by the new one.

Syntax

Syntax to use setAttributeNode() is as follows:

var_name = xmldoc.createAttribute("tagname");

Where,

e var_name: is the user-defined variable name which holds the name of new attribute

node.
43

' tutorialspoint

PLYEASYLEARMNINEG

e ("tagname"): is the name of new attribute node to be created.

Example

XML DOM

The following example (createattributenode_example.htm) parses an XML document
(node.xml) into an XML DOM object and creates a new attribute node section in the XML

document.

<!DOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

create_a = xmlDoc.createAttribute("section");

create_a.nodeValue = "A";

x = xmlDoc.getElementsByTagName("Employee");
x[0@].setAttributeNode(create_a);
document.write("New Attribute: ");

document.write(x[0].getAttribute("section"));

</script>

‘ tutorialspoint

PLYEASYLEARMNINEG

a4

https://www.tutorialspoint.com/dom/node.xml

XML DOM

</body>
</html>

In the above example:

e create_a=xmlDoc.createAttribute("Category"”) — creates an attribute with the
name <section>.

e create_a.nodeValue="Management”" — creates the value "A" for the attribute
<section>,

e x[0].setAttributeNode(create _a) — this attribute value is set to the node element
<Employee> indexed at 0.

45

\ tutorialspoint

PLYEASYLEARMNINEG

13. XML DOM - Add Node

In this chapter, we will discuss the nodes to the existing element. It provides a means to:
e append new child nodes before or after the existing child nodes
e insert data within the text node
e add attribute node
Following methods can be used to add/append the nodes to an element in a DOM:
e appendChild()
e insertBefore()

e insertData()

appendChild()

The method appendChild() adds the new child node after the existing child node.

Syntax
Syntax of appendChild() method is as follows:

Node appendChild(Node newChild) throws DOMException

Where,
e newChild — Is the node to add.
e This method returns the Node added.

Example

The following example (appendchildnode_example.htm) parses an XML document
(node.xml) into an XML DOM object and appends new child PhoneNo to the element
<FirstName>.

<!DOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

46

tutorialspoint

SIMPLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");
create_e = xmlDoc.createElement("PhoneNo");
x = xmlDoc.getElementsByTagName("FirstName")[0];
x.appendChild(create_e);

document.write(x.getElementsByTagName("PhoneNo")[0].nodeName);
</script>
</body>
</html>

In the above example:

e using the method createElement(), a new element PhoneNo is created.

e The new element PhoneNo is added to the element FirstName using the method
appendChild().

Execution

Save this file as appendchildnode_example.htm on the server path (this file and node.xml
should be on the same path in your server). In the output, we get the attribute value as
PhoneNo.

insertBefore()

The method insertBefore(), inserts the new child nodes before the specified child nodes.

Syntax

Syntax of insertBefore() method is as follows:

Node insertBefore(Node newChild, Node refChild) throws DOMException

47

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Where,

newChild — Is the node to insert

refChild — 1Is the reference node, i.e., the node before which the new node must
be inserted.

This method returns the Node being inserted.

Example

The

following example (insertnodebefore_example.htm) parses an XML document

("node.xml") into an XML DOM object and inserts new child Email before the specified
element <Email>.

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

create_e = xmlDoc.createElement("Email");

X = xmlDoc.documentElement;
y = xmlDoc.getElementsByTagName("Email");
48
tutorialspoint

PLYEASYLEARMNINEG

XML DOM

document.write("No of Email elements before inserting was: +
y.length);

document.write("
");

Xx.insertBefore(create_e,y[3]);

y=xmlDoc.getElementsByTagName("Email");

document.write("No of Email elements after inserting is: +
y.length);

</script>
</body>
</html>

In the above example:
e using the method createElement(), a new element Email is created.

e The new element Email is added before the element Email using the method
insertBefore().

e y.length gives the total number of elements added before and after the new
element.

Execution

Save this file as insertnodebefore _example.htm on the server path (this file and node.xml
should be on the same path in your server). We will receive the following output:

No of Email elements before inserting was: 3

No of Email elements after inserting is: 4

insertData()

The method insertData(), inserts a string at the specified 16-bit unit offset.

Syntax

The insertData() has the following syntax:

void insertData(int offset, java.lang.String arg) throws DOMException

Where:
e Offset — is the character offset at which to insert.

e arg — is the key word to insert the data. It encloses the two parameters offset and
string within the parenthesis separated by comma.

49

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Example

The following example (addtext_example.htm) parses an XML document (node.xml) into
an XML DOM object and inserts new data MiddleName at the specified position to the
element <FirstName>.

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName("FirstName")[@].childNodes[0];
document.write(x.nodeValue);

x.insertData(6, "MiddleName");

document.write("
");

document.write(x.nodeValue);

</script>
</body>
</html>

50

‘ tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

e x.insertData(6,"MiddleName"); — Here, x holds the name of the specified child
name, i.e., <FirstName>. We then insert to this text node, the
data"MiddleName" starting from position 6.

Execution

Save this file as addtext_example.htm on the server path (this file and node.xml should
be on the same path in your server). We will receive the following in the output:

Tanmay

TanmayMiddleName

51

‘ tutorialspoint

PLYEASYLEARMNINEG

14. XML DOM — Replace Node

In this chapter we will study about the replace node operation in an XML DOM object. As
we know everything in the DOM is maintained in a hierarchical informational unit known
as node and the replacing node provides another way to update these specified nodes or

a text node.
Following are the two methods to replace the nodes.
e replaceChild()

e replaceData()

replaceChild()

The method replaceChild() replaces the specified node with the new node.

Syntax

The insertData() has the following syntax:

Node replaceChild(Node newChild, Node oldChild) throws DOMException

Where,

e newChild — is the new node to put in the child list.
e 0ldChild — is the node being replaced in the list.

e This method returns the node replaced.

Example

The following example (replacenode_example.htm) parses an XML document (nhode.xml)
into an XML DOM object and replaces the specified node <FirstName> with the new node

<Name>.

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

tutorialspoint

SIMPLYEASYLEARMNINEG

52

https://www.tutorialspoint.com/dom/node.xml

XML DOM

else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc=1loadXMLDoc("/dom/node.xml");

X = xmlDoc.documentElement;

z=xmlDoc.getElementsByTagName("FirstName");

document.write("Content of FirstName element before replace
operation
");

for (i=0;i<z.length;i++)

{
document.write(z[i].childNodes[@].nodeValue);
document.write("
");

}

//create a Employee element, FirstName element and a text node

newNode = xmlDoc.createElement("Employee");

newTitle = xmlDoc.createElement("Name");

newText = xmlDoc.createTextNode("MS Dhoni");

//add the text node to the title node,
newTitle.appendChild(newText);
//add the title node to the book node
newNode.appendChild(newTitle);

y = xmlDoc.getElementsByTagName("Employee")[0]
//replace the first book node with the new node

x.replaceChild(newNode,y);

z = xmlDoc.getElementsByTagName("FirstName");

\tutorialspoint

SIMPLYEASYLEARMNINEG

53

XML DOM

document.write("Content of FirstName element after replace
operation
");

for (i = @;i<z.length;i++)

{
document.write(z[i].childNodes[@].nodeValue);
document.write("
");

}

</script>

</body>
</html>

Execution

Save this file as replacenode_example.htm on the server path (this file and node.xml
should be on the same path in your server).

We will get the output as shown below:

Content of FirstName element before replace operation
Tanmay
Taniya

Tanisha

Content of FirstName element after replace operation
Taniya

Tanisha

replaceData()

The method replaceData() replaces the characters starting at the specified 16-bit unit
offset with the specified string.

Syntax

The replaceData() has the following syntax:

void replaceData(int offset, int count, java.lang.String arg) throws
DOMException

Where,
e offset — is the offset from which to start replacing.

e count — is the number of 16-bit units to replace. If the sum of offset and count
exceeds length, then all the 16-bit units to the end of the data are replaced.

e arg — the DOMString with which the range must be replaced.
54

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

Example

XML DOM

The following example (replacedata_example.htm) parses an XML document (hode.xml)

into an XML DOM object and replaces it.

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName("ContactNo")[@].childNodes[0];

document.write("ContactNo before replace operation:
"+x.nodeValue);

x.replaceData(1,5,"9999999");
document.write("
");

document.write("ContactNo after replace operation:
"+x.nodeValue);

</script>
</body>
</html>

\tutorialspoint

SIMPLYEASYLEARMNINEG

55

https://www.tutorialspoint.com/dom/node.xml

XML DOM

In the above example:

x.replaceData(2,3,"999");: Here x holds the text of the specified element <ContactNo>
whose text is replaced by the new text"9999999", starting from the position 1 till the
length of 5.

Execution

Save this file as replacedata_example.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

ContactNo before replace operation: 1234567890

ContactNo after replace operation: 199999997890

56

‘ tutorialspoint

PLYEASYLEARMNINEG

15. XML DOM — Remove Node

In this chapter, we will study about the XML DOM Remove Node operation. The remove
node operation removes the specified node from the document. This operation can be
implemented to remove the nodes like text node, element node or an attribute node.

Following are the methods that are used for remove node operation:
e removeChild()

e removeAttribute()

removeChild()

The method removeChild() removes the child node indicated by oldChild from the list of
children, and returns it. Removing a child node is equivalent to removing a text node.
Hence, removing a child node removes the text node associated with it.

Syntax

The syntax to use removeChild() is as follows:

Node removeChild(Node oldChild) throws DOMException

Where,
e 0ldChild — is the node being removed.

e This method returns the node removed.

Example — Remove Current Node

The following example (removecurrentnode_example.htm) parses an XML document
(node.xml) into an XML DOM object and removes the specified node <ContactNo> from
the parent node.

<IDOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}

else // code for IE5 and IE6

57

tutorialspoint

SIMPLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

document.write("Before remove operation, total ContactNo elements:

");
document.write(xmlDoc.getElementsByTagName("ContactNo").length);
document.write("
");
x = xmlDoc.getElementsByTagName("ContactNo")[0];
x.parentNode.removeChild(x);
document.write("After remove operation, total ContactNo elements:

");
document.write(xmlDoc.getElementsByTagName("ContactNo").length);

</script>
</body>
</html>

In the above example:

e x = xmlDoc.getElementsByTagName("ContactNo")[0] gets the element
<ContactNo> indexed at 0.

e x.parentNode.removeChild(x) — removes the element <ContactNo> indexed at 0
from the parent node.

Execution

Save this file as removecurrentnode_example.htm on the server path (this file and
node.xml should be on the same path in your server). We get the following result:

Before remove operation, total ContactNo elements: 3

After remove operation, total ContactNo elements: 2

58

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Example — Remove Text Node

The following example (removetextNode_example.htm) parses an XML document
("node.xml") into an XML DOM object and removes the specified child node <FirstName>.

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName("FirstName")[0];

document.write("Text node of child node before removal is: ");
document.write(x.childNodes.length);

document.write("
");

y = X.childNodes[@O];
x.removeChild(y);
document.write("Text node of child node after removal is: ");

document.write(x.childNodes.length);

59

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

</script>
</body>
</html>

In the above example:

e x=xmlDoc.getElementsByTagName("FirstName")[0] — gets the first element
<FirstName> to the x indexed at 0.

e y=x.childNodes[0] — in this line y holds the child node to be remove.

e x.removeChild(y) — removes the specified child node.

Execution

Save this file as removetextNode example.htm on the server path (this file and node.xml
should be on the same path in your server). We get the following result:

Text node of child node before removal is: 1

Text node of child node after removal is: ©

removeAttribute()

The method removeAttribute() removes an attribute of an element by name.

Syntax

Syntax to use removeAttribute() is as follows:

void removeAttribute(java.lang.String name) throws DOMException

Where,

e name — is the name of the attribute to remove.

Example

The following example (removeelementattribute_example.htm) parses an XML document
("node.xml") into an XML DOM object and removes the specified attribute node.

<!DOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
60
tutorialspoint

PLYEASYLEARMNINEG

XML DOM

}
else // code for IE5 and IE6
{
xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}

xhttp.open("GET",filename,false);
xhttp.send();

return xhttp.responseXML;

}
</script>
</head>
<body>

<script>
xmlDoc=1oadXMLDoc("/dom/node.xml");

x=xmlDoc.getElementsByTagName('Employee');

document.write(x[1].getAttribute('category'));

document.write("
");

x[1].removeAttribute('category');

document.write(x[1].getAttribute('category'));

</script>

</body>
</html>

In the above example:

e document.write(x[1].getAttribute('category’')) — value of
attributecategory indexed at 1st position is invoked.

o x[1].removeAttribute('category’); removes the attribute value.

Execution

Save this file as removeelementattribute_example.htm on the server path (this file and
node.xml should be on the same path in your server). We get the following result:

Non-Technical

null

61

' tutorialspoint

PLYEASYLEARMNINEG

16. XML DOM — Clone Node

In this chapter, we will discuss the Clone Node operation on XML DOM object. Clone node
operation is used to create a duplicate copy of the specified node. cloneNode() is used for
this operation.

cloneNode()

This method returns a duplicate of this node, i.e., serves as a generic copy constructor for
nodes. The duplicate node has no parent (parentNode is null) and no user data.

Syntax

The cloneNode() method has the following syntax:

Node cloneNode(boolean deep)

e deep - If true, recursively clones the subtree under the specified node; if false,
clone only the node itself (and its attributes, if it is an Element).

e This method returns the duplicate node.

Example

The following example (clonenode_example.htm) parses an XML document (node.xml)
into an XML DOM object and creates a deep copy of the first Employee element.

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xhttp.open("GET",filename,false);
xhttp.send();

62

tutorialspoint

SIMPLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Employee')[0];
clone_node = x.cloneNode(true);

xmlDoc.documentElement.appendChild(clone_node);

firstname = xmlDoc.getElementsByTagName("FirstName");

lastname = xmlDoc.getElementsByTagName("LastName");
contact = xmlDoc.getElementsByTagName("ContactNo");
email = xmlDoc.getElementsByTagName("Email");

for (i = 0;1i < firstname.length;i++)

{

document.write(firstname[i].childNodes[@].nodeValue+'
'+lastname[i].childNodes[@].nodeValue+"',
"+contact[i].childNodes[@].nodeValue+', ‘'+email[i].childNodes[@].nodeValue);

document.write("
");
}
</script>
</body>
</html>

As you can see in the above example, we have set the cloneNode() param to true. Hence
each of the child element under the Employee element is copied or cloned.

Execution

Save this file as clonenode_example.htm on the server path (this file and node.xml should
be on the same path in your server). We will get the output as shown below:

Tanmay Patil, 1234567890, tanmaypatil@xyz.com
Taniya Mishra, 1234667898, taniyamishra@xyz.com
Tanisha Sharma, 1234562350, tanishasharma@xyz.com
Tanmay Patil, 1234567890, tanmaypatil@xyz.com

You will notice that the first Employee element is cloned completely.

63

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM Objects

@tvteriﬂlsg?fnﬁ

XML DOM

64

17. XML DOM — Node Object

Node interface is the primary datatype for the entire Document Object Model. The node is
used to represent a single XML element in the entire document tree.

A node can be any type that is an attribute node, a text node or any other node. The
attributes nodeName, nodeValue and attributes are included as a mechanism to get at
node information without casting down to the specific derived interface.

Attributes
The following table lists the attributes of the Node object:
Attribute Type Description
This is of type NamedNodeMap containing
. the attributes of this node (if it is an
attributes NamedNodeMap Element) or null otherwise. This has been
removed. Refer specs
baseURI DOMString It is used to specify absolute base URI of the
node.
It is a NodeList that contains all children of
childNodes NodelList this node. If there are no children, this is
a Nodelist containing no nodes.
firstChild Node It specifies the first child of a node.
lastChild Node It specifies the last child of a node.
It is used to specify the name of the local
localName DOMString part of a node. This has been removed.
Refer specs.
. It specifies the namespace URI of a
namespaceURI DOMString node. This has been removed. Refer specs
It returns the node immediately following
nextSibling Node this node. If there is no such node, this
returns null.
65
tutorialspoint

SIMPLYEASYLEARMNINEG

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node

XML DOM

nodeName DOMString The name of this node, depending on its
type.

nodeType unsigned short It is a .code representmg the type of the
underlying object.

nodeValue DOMString It is u;ed to spe_C|fy the value of a node
depending on their types.
It specifies the Document object associated

ownerDocument Document .
with the node.

parentNode Node This property specifies the parent node of a
node.
This property returns the namespace prefix

prefix DOMString of a node. This has been removed.
Refer specs

previousSibling Node This §peC|f|es the node immediately
preceding the current node.

textContent DOMString This specifies the textual content of a node.

baseURI

Attribute baseURI is used to specify the absolute base URI of the node.

Syntax

Following is the syntax for the usage of the baseURI attribute.

nodeObject.baseURI

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

' tutorialspoint

PLYEASYLEARMNINEG

66

https://dom.spec.whatwg.org/#interface-node

XML DOM

<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of baseURI attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
67
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Employee')[0];

document.write("Base URI: "+x.baseURI);

</script>
</body>
</html>

Execution

Save this file as nodeattribute_baseuri.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Base URI: http://www.tutorialspoint.com/dom/node.xml

childNodes

Attribute childNodes is used to describe the child node from the NodeList for a node.

Syntax

Following is the syntax for the usage of the childNodes attribute.

nodeObject.childNodes

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

' tutorialspoint

PLYEASYLEARMNINEG

68

XML DOM

<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>»1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of childNodes attribute:

<IDOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.childNodes;

\tutorialspoint

SIMPLYEASYLEARMNINEG

69

XML DOM

for (i = 9;i < x.length;i ++)

{

document.write("Nodename:

document.write(" (nodetype:
}
</script>
</body>
</html>

+ x[i].nodeName);

+ x[i].nodeType + ")
");

Execution

Save this file as nodeattribute_childnodes.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Nodename: Company (nodetype: 1)

firstChild

Attribute firstChild specifies the first child of a node.

Syntax

Following is the syntax for the usage of the firstChild attribute.

nodeObject.firstChild

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>

<LastName>Mishra</LastName>

' tutorialspoint

PLYEASYLEARMNINEG

70

XML DOM

<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the firstChild attribute:

<IDOCTYPE html>
<html>
<body>
<script>

if (window.XMLHttpRequest)

{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();

xmlDoc = xmlhttp.responseXML;

function get_firstChild(p)

{
a = p.firstChild;
while (a.nodeType!=1)
{
a = a.nextSibling;
}
return a;
}
71
' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

x = get_firstChild(xmlDoc.getElementsByTagName("Employee"”)[0]);

document.write("First child is :

document.write(x.nodeName);

</script>
</body>
</html>

Execution

Save this file as nodeattribute_firstchild.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

First child is : FirstName

lastChild

The attribute /astChild specifies the last child of a node.

Syntax

Following is the syntax for the usage of the /astChild attribute.

nodeObject.lastChild

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

' tutorialspoint

PLYEASYLEARMNINEG

72

XML DOM

<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">

<FirstName>Tanisha</FirstName>

<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>

<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of /astChild attribute:

<IDOCTYPE html>
<html>
<body>
<script>

if (window.XMLHttpRequest)

{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc = xmlhttp.responseXMmL;

function get lastChild(p)

{
a = p.lastChild;
while (a.nodeType != 1)

{
a = a.previousSibling;
}
return a;
}
73
tutorialspoint

PLYEASYLEARMNINEG

XML DOM

x = get_lastChild(xmlDoc.getElementsByTagName("Employee")[0]);
document.write("Last child is : ");
document.write(x.nodeName);

</script>

</body>
</html>

Execution

Save this file as nodeattribute_lastChild.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Last child is : Email

localName

The attribute localName is used to specify the name of the local part of a node.

Syntax

Following is the syntax for the usage of the localName attribute.

nodeObject.localName

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

74

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the /localName attribute:

<!DOCTYPE html>

<html>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");
x = xmlDoc.getElementsByTagName('LastName');
document.write("Local name: " + x.item(®).localName);
</script>
</body>
</html>

\tutorialspoint

SIMPLYEASYLEARMNINEG

75

XML DOM

Execution

Save this file as nodeattribute _localname.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Local name: LastName

nextSibling

Attribute nextSibling returns the node immediately following this node. If there is no such
node, this returns null.

Syntax

Following is the syntax for the usage of the nextSibling attribute.

nodeObject.nextSibling

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

76

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</Company>

Following example demonstrates the usage of the nextSibling attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

function get_nextsibling(nl)

cl = nl.nextSibling;
while (cl.nodeType!=1)

{

cl = cl.nextSibling;
}
return cl;

xmlDoc = loadXMLDoc("/dom/node.xml");

‘ tutorialspoint

PLYEASYLEARMNINEG

77

XML DOM

cl

xmlDoc.getElementsByTagName("FirstName")[0];

document.write(cl.nodeName);

document.write(" and value = ");

document.write(cl.childNodes[@].nodeValue);

c2 = get_nextsibling(cl);

document.write("Name of Next sibling is: ");

document.write(c2.nodeName);

document.write(" and value = ");

document.write(c2.childNodes[@].nodeValue);

</script>
</body>
</html>

Execution

Save this file as nodeattribute _nextsibling.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

FirstName and value = Tanmay

Name of Next sibling is: LastName and value = Patil

nodeName

Attribute nodeName gives the name of the node, depending on its type.

Syntax

Following is the syntax for the usage of the nodeName attribute.

nodeObject.nodeName

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee category="Technical">

<FirstName>Tanmay</FirstName>

<LastName>Patil</LastName>

PLYEAS

' tutorialspoint

Y LEARMINIEG

78

XML DOM

<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the nodeName attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXMmL;
}
</script>
</head>
79
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<body>

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

document.write("Nodename:

document.write(" (nodetype:

x=xmlDoc.documentElement;

document.write("Nodename:

document.write(" (nodetype:

</script>
</body>
</html>

+

xmlDoc.nodeName);

+ xmlDoc.nodeType + ")
");

x.nodeName) ;

+ X.nodeType + ")
");

Execution

Save this file as nodeattribute_nodename.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Nodename: #document (nodetype: 9)

Nodename: Company (nodetype: 1)

nodeType

Attribute nodeType is a code representing the type of the underlying object.

Syntax

Following is the syntax for the usage of the nodeType attribute.

nodeObject.nodeType

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">

<FirstName>Tanmay</FirstName>

' tutorialspoint

PLYEASYLEARMNINEG

80

XML DOM

<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of nodeType attribute:

<!DOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);

xhttp.send();

return xhttp.responseXMmL;

\tutorialspoint

SIMPLYEASYLEARMNINEG

81

XML DOM

}
</script>
</head>
<body>
<script>
xmlDoc =

document.write("Nodename:

document.write(" (nodetype:

x=xmlDoc.documentElement;

document.write("Nodename:

document.write(" (nodetype:

</script>
</body>
</html>

loadXMLDoc (" /dom/node.xml");

+ xmlDoc.nodeName);

+ xmlDoc.nodeType + ")
");

+ X.nodeName);

+ X.nodeType + ")
");

Execution

Save this file as nodeattribute _nodetype.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Nodename: #document (nodetype: 9)

Nodename: Company (nodetype: 1)

nodeValue

Attribute nodeValue is used to specify the value of a nhode depending on their types.

Syntax

Following is the syntax for the usage of the nodeValue attribute.

nodeObject.nodeValue

Example

node.xml contents are as below:

<?xml version="1.0"?>

' tutorialspoint

PLYEASYLEARMNINEG

82

XML DOM

<Company>

<Employee category="Technical”>

<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of nodeValue attribute:

<!DOCTYPE html>
<html>
<body>
<div>
FirstName:

LastName:

</div>
<script>
if (window.XMLHttpRequest)
{// code for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp = new XMLHttpRequest();
}
else
{// code for IE6, IE5
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

\tutorialspoint

SIMPLYEASYLEARMNINEG

83

XML DOM

}

xmlhttp.open("GET","/dom/node.xml",false);

xmlhttp.send();

xmlDoc = xmlhttp.responseXML;

document.getElementById("FirstName").innerHTML=

xmlDoc.getElementsByTagName("FirstName")[0].childNodes[@].nodeValue;

document.getElementById("LastName").innerHTML=

xmlDoc.getElementsByTagName("LastName")[@].childNodes[@].nodeValue;

</script>
</body>
</html>

Execution

Save this file as nodeattribute _nodevalue.htm on the server path (this file and node.xml
should be on the same path in your server).We will get the output as shown below:

FirstName: Tanmay

LastName: Patil

ownerDocument

Attribute ownerDocument specifies the Document object associated with the node.

Syntax

Following is the syntax for the usage of the ownerDocument attribute.

nodeObject.ownerDocument

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">

<FirstName>Tanmay</FirstName>

' tutorialspoint

PLYEASYLEARMNINEG

84

XML DOM

<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the ownerDocument attribute:

<!DOCTYPE html>

<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{

xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;

}

</script>
85
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

x = xmlDoc.getElementsByTagName("Employee")[@].ownerDocument;

document.write("Nodename: + X.nodeName);

document.write(" (nodetype: + x.nodeType + ")");
</script>
</body>
</html>

Execution

Save this file as nodeattribute_ownerdocument.htm on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

Nodename: #document (nodetype: 9)

parentNode

Attribute parentNode specifies the parent node of a node.

Syntax

Following is the syntax for the usage of the parentNode attribute.

nodeObject.parentNode

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>

<LastName>Patil</LastName>

86

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the parentNode attribute:

<!DOCTYPE html>

<html>
<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc = xmlhttp.responseXML;
document.write("Parent node of Employee is: ");
x = xmlDoc.getElementsByTagName("Employee")[0];
document.write(x.parentNode.nodeName);
</script>
</body>

\tutorialspoint

SIMPLYEASYLEARMNINEG

87

XML DOM

</html>

Execution

Save this file as nodeattribute _parentnode.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Parent node is : Company

previousSibling

Attribute previousSibling specifies the node immediately preceding the current node.

Syntax

Following is the syntax for the usage of the previousSibling attribute.

nodeObject.previousSibling

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>

<Email>tanishasharma@xyz.com</Email>

88

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</Employee>

</Company>

Following example demonstrates the usage of previousSibling attribute:

<IDOCTYPE html>
<html>
<body>
<script>
if (window.XMLHttpRequest)

{
xmlhttp = new XMLHttpRequest();

}

else

{
xmlhttp

}
xmlhttp.open("GET","/dom/node.xml",false);

new ActiveXObject("Microsoft.XMLHTTP");

xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

function get_previousSibling(p)
{

a = p.previousSibling;

while (a.nodeType != 1)

{

a = a.previousSibling;

return a;

x = get_previousSibling(xmlDoc.getElementsByTagName("Email")[0]);
document.write("Previous sibling of Email is : ");
document.write(x.nodeName);
</script>
</body>
</html>

‘ tutorialspoint

PLYEASYLEARMNINEG

89

XML DOM

Execution

Save this file as nodeattribute previoussibling.htm on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

Previous sibling of Email is : ContactNo

textContent

Attribute textContent specifies the textual content of a node.

Syntax

Following is the syntax for usage of the textContent attribute.

nodeObject.textContent

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

90

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</Company>

Following example demonstrates the usage of textContent attribute:

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}

</script>

</head>

<body>

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Email');
document.write("Text Content of Email node is : ");

document.write(x.item(@).textContent);

</script>
</body>
</html>

Execution

Save this file as nodeattribute_textcontent.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

91

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Text Content of Email node is

: tanmaypatil@xyz.com

Node Types

We have listed the node types as below:

e ELEMENT_NODE
e ATTRIBUTE_NODE
e ENTITY_NODE

e ENTITY_REFERENCE_NODE
e DOCUMENT_FRAGMENT_NODE

e TEXT_NODE
e CDATA_SECTION_NODE
e COMMENT_NODE

e PROCESSING_INSTRUCTION_NODE

e DOCUMENT_NODE
e DOCUMENT_TYPE_NODE
e NOTATION_NODE

Methods

Below table lists the different Node Object methods:

getUserData

Method

Description

appendChild(Node newChild)

This method adds a node after the
last child node of the specified
element node. It returns the added
node.

cloneNode(boolean deep)

This method is used to create a
duplicate node, when overridden in a
derived class. It returns the
duplicated node.

utorialspoint

PLYEASYLEARMNINEG

92

XML DOM

compareDocumentPosition(Node other)

This method is used to compare the
position of the current node against a
specified node according to the
document order. Returns unsigned
short, how the node is positioned
relatively to the reference node.

getFeature(DOMString feature, DOMString
version)

Returns the DOM Object which
implements the specialized APIs of
the specified feature and version, if
any, or null if there is no object. This
has been removed. Refer specs.

getUserData(DOMString key)

Retrieves the object associated to a
key on this node. The object must
first have been set to this node by
calling the setUserData with the
same key. Returns the
DOMUserData associated to the
given key on this node, or null if there
was none. This has been removed.
Refer specs.

hasAttributes()

Returns whether this node (if it is an
element) has any attributes or not.
Returns true if any attribute is
present in the specified node else
returns false. This has been
removed. Refer specs.

hasChildNodes()

Returns whether this node has any
children or not. This method
returns true if the current node has
child nodes otherwise false.

insertBefore(Node newChild, Node refChild)

This method is used to insert a new
node as a child of this node, directly
before an existing child of this node.
It returns the node being inserted.

isDefaultNamespace(DOMString
namespaceURI)

This method accepts a namespace
URI as an argument and returns
a Boolean with a value of true if the
namespace is the default namespace
on the given node or false if not.

' tutorialspoint

PLYEASYLEARMNINEG

93

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node

XML DOM

isEqualNode(Node arg)

This method tests whether two nodes
are equal. Returns true if the nodes
are equal, false otherwise.

isSameNode(Node other)

This method returns whether current
node is the same node as the given
one. Returns true if the nodes are the
same, false otherwise. This has been
removed. Refer specs.

isSupported(DOMString feature,
DOMString version)

This method returns whether the
specified DOM module is supported
by the current node. Returns true if
the specified feature is supported on
this node, false otherwise. This has
been removed. Refer specs.

lookupNamespaceURI(DOMString prefix)

This method gets the URI of the
namespace associated with the
namespace prefix.

lookupPrefix(DOMString namespaceURI)

This method returns the closest prefix
defined in the current namespace for
the namespace URI. Returns an
associated namespace prefix if found
or null if none is found.

normalize()

Normalization adds all the text nodes
including attribute nodes which
define a normal form where structure
of the nodes which contain elements,
comments, processing instructions,
CDATA sections, and entity
references separates the text nodes,
i.e., neither adjacent Text nodes nor
empty Text nodes.

removeChild(Node oldChild)

This method is used to remove a
specified child node from the current
node. This returns the node removed.

replaceChild(Node newChild, Node oldChild)

This method is used to replace the old
child node with a new node. This
returns the node replaced.

' tutorialspoint

PLYEASYLEARMNINEG

94

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node

XML DOM

setUserData(DOMString key,

DOMUserData data, UserDataHandler

This method associates an object to a
key on this node. The object can later
be retrieved from this node by calling
the getUserData with the same key.
This returns

handler) the DOMUserData previously
associated to the given key on this
node. This has been removed.
Refer specs.

appendChild

The Method appendChild adds a node after the last child node of the specified element

node. It returns the added node.

Syntax

Following is the syntax for the usage of the appendChild attribute.

nodeObject.appendChild(newChild)

Parameter

Description

newChild It is the new node to be added/appended. It is of type Node.

This method returns the Node added.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee category="Technical">

<FirstName>Tanmay</FirstName>

<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

' tutorialspoint

PLYEASYLEARMNINEG

95

https://dom.spec.whatwg.org/#interface-node

XML DOM

<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of appendChild attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

create_e = xmlDoc.createElement("PhoneNo");

X = xmlDoc.getElementsByTagName("FirstName")[0];

\tutorialspoint

SIMPLYEASYLEARMNINEG

96

XML DOM

Xx.appendChild(create_e);
document.write("Appended child is : ")
document.write(x.getElementsByTagName("PhoneNo")[0].nodeName);

</script>

</body>
</html>

Execution

Save this file as nodemethod _appendchild.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Appended child is : PhoneNo

cloneNode

Method cloneNode is used to create a duplicate node, when overridden in a derived class.
It returns the duplicated node.

Syntax

Following is the syntax for the usage of the cloneNode method.

nodeObject.cloneNode(boolean deep)

Parameter | Description

If true, recursively clones the subtree under the specified node; if false,

deep clone only the node itself (and its attributes, if it is an Element).

This method returns the duplicate Node.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">

<FirstName>Tanmay</FirstName>

97

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of cloneNode method:

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;

}

</script>

\tutorialspoint

SIMPLYEASYLEARMNINEG

98

XML DOM

</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

x = xmlDoc.getElementsByTagName('Employee')[0];
clone_node = x.cloneNode(true);
xmlDoc.documentElement.appendChild(clone_node);
document.write("Following list has cloned node: ");
document.write("
");

y = xmlDoc.getElementsByTagName("LastName");

for (i = 0; i < y.length; i ++)

{

document.write(y[i].childNodes[@].nodeValue);
document.write("
");
}
</script>
</body>
</html>
Execution

Save this file as nodemethod_clonenode.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Following list has cloned node:

Patil
Mishra
Sharma

Patil

You will notice that the first LastName Patil is cloned.

compareDocumentPosition

Method compareDocumentPosition is used to compare the position of the current node
against a specified node according to the document order. Returns unsigned short, how

the node is positioned relatively to the reference node.

Syntax

Following is the syntax for the usage of the compareDocumentPosition method.

\tutorialspoint

SIMPLYEASYLEARMNINEG

99

XML DOM

nodeObject.compareDocumentPosition(Node other)

Parameter

Description

other

It is the reference node to which the current node is compared. It is of
type Node.

This method returns how the node is positioned relatively to the reference node.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee category="Technical">

<FirstName>Tanmay</FirstName>

<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">

<FirstName>Taniya</FirstName>

<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">

<FirstName>Tanisha</FirstName>

<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>

<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the compareDocumentPosition method:

<!DOCTYPE html>

<html>

100

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

f1 = xmlDoc.getElementsByTagName('LastName')[1];
f2 = xmlDoc.getElementsByTagName('LastName')[2];
document.write("Result after comparing the position : ")

document.write(fl.compareDocumentPosition(f2));

</script>

</body>
</html>

Execution

Save this file as nodemethod comparedocumentposition.htm on the server path (this file
and node.xml should be on the same path in your server).We will get the output as shown
below:

Result after comparing the position : 4

101

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

hasChildNodes

The method hasChildNodes returns whether this node has any children. This method
returns true if the current node has child nodes otherwise false.

Syntax
Following is the syntax for the usage of the hasChildNodes method.

nodeObject.hasChildNodes()

This method returns boolean true value if the node has any child, false otherwise.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the hasChildNodes method:

<!DOCTYPE html>

102

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

y = xmlDoc.getElementsByTagName("Employee")[0];
document.write("Checks for the existence of child node : ");
document.write(y.hasChildNodes());

</script>

</body>
</html>

Execution

Save this file as nodemethod_haschildnodes.htm on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

Checks for the existence of child node : true

103

' tutorialspoint

PLYEASYLEARMNINEG

insertBefore

XML DOM

Method insertBefore inserts a new node as a child of this node, directly before an existing

child of this node. It returns the node being inserted.

Syntax

Following is the syntax for the usage of the insertBefore method.

nodeObject.insertBefore(Node newChild, Node refChild)

Parameter | Description

newChild It is the new node to be added. It is of type Node.

type Node.

refChild It is used as a reference node before which a new node is added. It is of

This method returns the node being inserted.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>

' tutorialspoint

PLYEASYLEARMNINEG

104

XML DOM

<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the insertBefore method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc=1oadXMLDoc (" /dom/node.xml");

create_e = xmlDoc.createElement("Email");

PLYEASYLEARMNINEG

f1 = xmlDoc.documentElement;
f2 = xmlDoc.getElementsByTagName("Email");
105
tutorialspoint

XML DOM

document.write("No of Email elements before insert operation: +
f2.length);

document.write("
");

fl.insertBefore(create_e,f2[3]);

f2 = xmlDoc.getElementsByTagName("Email");

document.write("No of Email elements after insert operation: " +
f2.length);
</script>
</body>
</html>
Execution

Save this file as nodemethod_insertbefore.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

No of Email elements before insert operation: 3

No of Email elements after insert operation: 4

isDefaultNamespace

The method isDefaultNamespace accepts a namespace URI as an argument and returns
a Boolean with a value of true if the namespace is the default namespace on the given
node or false if not.

Syntax

Following is the syntax for the usage of the isDefaultNamespace method.

result = nodeobject.isDefaultNamespace(namespaceURI)

Parameter Description

namespaceURI | It is a String representing the namespace against which the element
will be checked.

This method returns boolean true or false.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

106

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<Employee Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName>Tanmay</e:FirstName>

<e:LastName>Patil</e:LastName>

<e:ContactNo>1234567890</e:ContactNo>

<e:Email>tanmaypatil@xyz.com</e:Email>
</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical"”>

<n:FirstName>Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniyamishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the isDefaultNamespace method:

<!DOCTYPE html>

<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{

xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;

}

</script>
107
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</head>
<body>

<script>
xmlDoc = loadXMLDoc("/dom/node ns.xml");
x = xmlDoc.getElementsByTagName('Employee');

document.write("Namespace URI of Employee node is:
"+x.item(@).attributes[0@].namespaceURI);

var uri = "http://www.tutorials.com/technical/";
y = xmlDoc.getElementsByTagNameNS(uri, 'FirstName')[0];
document.write("
isDefaultNamespace: ");
document.write(y.isDefaultNamespace(uri));
</script>
</body>
</html>

Execution

Save this file as nodemethod_isDefaultNamespace.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

Namespace URI of Employee node is: http://www.w3.org/2000/xmlns/

isDefaultNamespace: false

isEqualNode

Method isEqualNode tests whether two nodes are equal. Returns true if the nodes are
equal, false otherwise.

Syntax

Following is the syntax for the usage of the isEqualNode method.

nodeObject.isEqualNode(Node arg)

Parameter Description

arg It is the node with which equality condition is evaluated. It is of typeNode.

This method returns the boolean true if the nodes are equal, false if otherwise.
Example

108

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

node.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the isEqualNode method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
109
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

}

}
xhttp.open("GET",filename,false);

xhttp.send();

return xhttp.responseXML;

</script>

</head>
<body>

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

el
e2

document.write("Checks the equality result :

= xmlDoc.getElementsByTagName("Employee")[2];

document.write(el.isEqualNode(e2));

</script>

</body>
</html>

xmlDoc.getElementsByTagName("Employee")[1];

")

Execution

Save this file as nodemethod_isequalnode.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Checks the equality result : false

lookupNamespaceURI

Method lookupNamespaceURI gets the URI of the namespace associated with the
namespace prefix, starting from the current node.

Syntax

Following is the syntax for the usage of the lookupNamespaceURI method.

nodeObject.lookupNamespaceURI(DOMString prefix)

Parameter

Description

prefix

Based on this parameter namespace uri is return if present any. It is of

type DOMString.

' tutorialspoint

PLYEASYLEARMNINEG

110

XML DOM

This method returns the associated namespace URI or null if none is found.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical"”>
<e:FirstName>Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

<n:FirstName>Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniymishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the lookupNamespaceURI method:

<!DOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
Tt
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");

y = xmlDoc.getElementsByTagName("Employee")[0];
document.write("lookupNameSpaceURI is : ")
document.write(y.lookupNamespaceURI("e"));
</script>
</body>
</html>

Execution

Save this file as nodemethod namespaceuri.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

lookupNameSpaceURI is : http://www.tutorials.com/technical/

lookupPrefix

Method lookupPrefix returns the closest prefix defined in the current namespace for the
namespace URI. Returns an associated namespace prefix if found or null if none is found.

Syntax

Following is the syntax for the usage of the lookupPrefix method.

nodeObject. lookupPrefix(DOMString namespaceURI)

Parameter Description

namespaceURI | Based on this parameter prefix is returned. It is of typeDOMString.

112

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

This method returns the associated namespace prefix or null if none is found.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical"”>
<e:FirstName>Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

<n:FirstName>Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniymishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the lookupPrefix method:

<!DOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
113
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");

y=xmlDoc.getElementsByTagName("Employee")[0];
document.write("lookupPrefix is : ")
document.write(y.lookupPrefix("http://www.tutorials.com/technical/"));
</script>
</body>
</html>

Execution

Save this file as nodemethod lookupprefix.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

lookupPrefix is : e

nomalize

Method normalize adds all the text nodes including attribute nodes which define a normal
form where the structure of the nodes which contains elements, comments, processing
instructions, CDATA sections, and entity references separates the text nodes, i.e., neither
adjacent Text nodes nor empty Text nodes.

Syntax

Following is the syntax for the usage of the normalize method.

nodeobject.normalize();

This method has no parameters and no return value.

114

' tutorialspoint

PLYEASYLEARMNINEG

Example

node.xml contents are as below:

XML DOM

<?xml version="1.0"?>
<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the normalize method:

<!DOCTYPE html>
<html>
<head>

<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{

xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{

\tutorialspoint

SIMPLYEASYLEARMNINEG

115

XML DOM

xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");
X = xmlDoc.createElement('Employee');
x.appendChild(document.createTextNode("EmployeeA "));
x.appendChild(document.createTextNode("EmployeeB "));

document.write("Before normalize
");
document.write("Child node length: "+x.childNodes.length+"
");

document.write("First child node:
"+x.childNodes[@].textContent+"
");

document.write("Second child node:
"+x.childNodes[1].textContent+"
");

x.normalize();
document.write("After normalize
");
document.write("Child node length: "+x.childNodes.length+"
");

document.write("First child node:
"+x.childNodes[@].textContent+"
");

</script>
</body>
</html>

Execution

Save this file as nodemethod_normalise.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Before normalize

Child node length: 2

First child node: EmployeeA
Second child node: EmployeeB

After normalize

116

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Child node length: 1

First child node: EmployeeA EmployeeB

removeChild

Method removeChild is used to remove a specified child node from the current node.

Returns the node removed.

Syntax

Following is the syntax for the usage of the removeChild method.

nodeObject.removeChild(Node o0ldChild)

Parameter Description

oldChild Specifies child to be removed. It is of type Node.

This method returns the node removed.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">

<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>

' tutorialspoint

PLYEASYLEARMNINEG

117

XML DOM

<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the removeChild method:

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

f1l xmlDoc.documentElement;
f2 = fl.childNodes[5];
removedNode = f2.removeChild(f2.childNodes[5]);

document.write("Removed node is : " + removedNode.nodeName);
</script>

</body>

</html>

Execution

‘ tutorialspoint

PLYEASYLEARMNINEG

118

XML DOM

Save this file as nodemethod_removechild.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Removed node is : ContactNo

replaceChild

Method replaceChild is used to replace the old child node with a new node. This returns
the node replaced.

Syntax
Following is the syntax for the usage of the replaceChild method.

nodeObject.replaceChild(Node newChild, Node oldChild)

Parameter | Description

newChild It is the new child to be replaced with the old child. It is of typeNode.

oldChild This parameter is replaced by the new child. It is of type Node.

This method returns the node replaced.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>

<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>
</Employee>

<Employee category="Management">

119

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>

<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the replaceChild method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.documentElement;

xmlDoc.createElement("Employee");

create_el

create_e2 = xmlDoc.createElement("Email");

H
N
D

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

create_t = xmlDoc.createTextNode("tanu@xyz.com");

create_e2.appendChild(create_t);
create_el.appendChild(create_e2);

y = xmlDoc.getElementsByTagName("Employee")[0]
x.replaceChild(create_el,y);

z = xmlDoc.getElementsByTagName("Email")[0];
document.write("After Replacement : ")

document.write(z.childNodes[@].nodeValue);

</script>
</body>
</html>

Execution

Save this file as nodemethod_replacechild.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

After Replacement : tanu@xyz.com

‘ tutorialspoint

PLYEASYLEARMNINEG

121

18. XML DOM — Nodelist Object

The Nodelist object specifies the abstraction of an ordered collection of nodes. The items
in the NodelList are accessible via an integral index, starting from 0.

Attributes
The following table lists the attributes of the NodeList object:
Attribute Type Description
length unsigned long It gives the number of nodes in the node list.
Object Attribute - length

Attribute /ength gives the number of nodes in the node list.

Syntax

Following is the syntax for the usage of the /ength attribute.

nodelistObject.length

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

122

tutorialspoint

SIMPLYEASYLEARMNINEG

mailto:taniyamishra@xyz.com%3C/Email

XML DOM

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>»1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

The following example parses an XML document (nhode.xml) into an XML DOM object and
extracts the length information using the length attribute.

<!DOCTYPE html>

<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc = xmlhttp.responseXMmL;

y = xmlDoc.getElementsByTagName('FirstName');

document.write("Length of node list: + y.length);
</script>
</body>
</html>

Execution

Save this file as nodeattribute_length.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Length of node list: 3

123

' tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml

XML DOM

Methods

The following is the only method of the NodelList object.

Method Description

It returns the indexth item in the collection. If index is greater than or equal

item() to the number of nodes in the list, this returns null.

Object Method — item

Method item returns the indexth item in the collection.

Syntax

Following is the syntax for the usage of the item attribute.

Node item(long index)

Where index is the index into the collection.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

124

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</Company>

The following example (nodelist_methods.htm) parses an XML document (node.xml) into
an XML DOM object and displays each item in the node list:

<!DOCTYPE html>
<body>
<script>

if (window.XMLHttpRequest)

{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

y=xmlDoc.getElementsByTagName("Employee");

for (i=0; icy.length; i++)

{

document.write(y.item(i).nodeName);
document.write("
");
}
</script>
</body>
</html>
Execution

Save this file as nodemethod_item.htm on the server path (this file and node.xml should
be on the same path in your server). We will get the output as shown below:

Employee
Employee

Employee

125

‘ tutorialspoint

PLYEASYLEARMNINEG

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

19. XML DOM — NamedNodeMap Object

The NamedNodeMap object is used to represent collections of nodes that can be accessed

by name.
Attributes
The following table lists the Property of the NamedNodeMap Object.
Attribute Type Description
length unsigned It gives the number of nodes in this map. The range of valid
long child node indices is 0 to length-1 inclusive.

NamedNodeMap Object Property- length

Property length gives the number of nodes in this map. The range of the valid child node
indices is 0 to length-1 inclusive.

Syntax

Following is the syntax for the usage of the length property.

nodemapObject.length

Example

node.xml contents are as below:

<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

126

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the length property:

<!DOCTYPE html>
<html>
<body>
<script>
if (window.XMLHttpRequest)
{// code for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp = new XMLHttpRequest();
}
else
{// code for IE6, IES5
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;

x = xmlDoc.getElementsByTagName("Employee");
document.write("Length is : ");
document.write(x.item(@).attributes.length);
</script>
</body>
</html>

Execution

Save this file as namednodemapproperty length.htm on the server path (this file and
node_methods.xml should be on the same path in your server). We will get the output as

shown below:

' tutorialspoint

PLYEASYLEARMNINEG

127

XML DOM

Length is : 1

Methods

The following table lists the methods of the NamedNodeMap object.

Methods

Description

getNamedItem ()

Retrieves the node specified by name.

getNamedItemNS ()

Retrieves a node specified by local name and namespace
URI.

item ()

Returns the indexth item in the map. If index is greater
than or equal to the number of nodes in this map, this
returns null.

removeNamedItem ()

Removes a node specified by name.

removeNamedItemNsS ()

Removes a node specified by local name and namespace
URI.

setNamedItem ()

Adds a node using its nodeName attribute. If a node with
that name is already present in this map, it is replaced by
the new one.

setNamedItemNS ()

Adds a node using its namespaceURI and localName. If a
node with that namespace URI and that local name is
already present in this map, it is replaced by the new one.
Replacing a node by itself has no effect.

NamedNodeMap Object Method- getNameditem

Method getNamedItem () retrieves the node specified by name.

Syntax

Following is the syntax for the usage of the getNamedItem() method.

nodemapObject.getNamedItem(name)

128

utorialspoint

PLYEASYLEARMNINEG

XML DOM

Parameter Description

name This specifies the name of the node to retrieve. It is of typeDOMString.

This method returns the Node specified by name.

Example

node.xml contents are as below:

<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the getNamedItem() method:

<IDOCTYPE html>
<html>
<body>
<script>
if (window.XMLHttpRequest)
{// code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp = new XMLHttpRequest();

129

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

else
{// code for IE6, IE5

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc = xmlhttp.responseXML;

xmlDoc = xmlDoc.getElementsByTagName('Employee')[0].attributes;
document.write("Name of attribute category for node Employee is: ");
document.write(xmlDoc.getNamedItem('category').nodeValue);
</script>
</body>
</html>

Execution

Save this file as namednodemapmethod _getnameditem.htm on the server path (this file
and node_methods.xml should be on the same path in your server). We will get the output
as shown below:

Name of attribute category for node Employee is: Technical

NamedNodeMap Object Method- getNameditemNS

Method getNamedItemNS () retrives node specified by local name and namespace URI.

Syntax
Following is the syntax for the usage of the getNamedItemNS() method.

nodemapObject.getNamedItemNS(namespaceURI, localName);

Parameter Description

namespaceURI | It is the namespaceURI of the node to retrieve. It is of typeDOMString.

localName It is the local name of the node to retrieve. It is of typeDOMString.

This method returns namespaceURI and the local name of the specified node or null if they
do not have any value.

130

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical”>
<e:FirstName e:language="English">Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical"”>

<n:FirstName>Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniymishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the getNamedItemNS() method:

<!DOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp=new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();

return xhttp.responseXML;

131

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node_ns.xml");
xmlDoc = xmlDoc.getElementsByTagName('e:FirstName')[0].attributes;
document.write("Named Item Attribute node is :- ");

document.write(xmlDoc.getNamedItemNS("http://www.tutorials.com/technical/", 'lan
guage').nodeName);

document.write("
");

document.write("Named Item Attribute value is :- ");

document.write(xmlDoc.getNamedItemNS("http://www.tutorials.com/technical/", 'lan
guage').nodeValue);

</script>
</body>
</html>

Execution

Save this file as namednodemapmethod_getnameditemns.htm on the server path (this file
and node_ns.xml should be on the same path in your server). We will get the output as
shown below:

Named Item Attribute node is :- e:language

Named Item Attribute value is :- English

NamedNodeMap Object Method- item ()

Method item () returns the indexth item in the map. If index is greater than or equal to
the number of nodes in this map, this returns null.

Syntax

Following is the syntax for the usage of the item() method.

nodemapObject.item(index)

132

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Parameter Description

It specifies the position of the item into the map. It is of typeunsigned

index
long.

This method returns the indexth item in the map.

Example

node.xml contents are as below:

<Company>

<Employee category="Technical”>
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the item() method:

<!DOCTYPE html>
<html>
<body>
<script>

if (window.XMLHttpRequest)

133

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

{// code for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp = new XMLHttpRequest();
}
else
{// code for IE6, IES
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc = xmlhttp.responseXML;

x=xmlDoc.getElementsByTagName('Employee');

item_name = x.item(@).attributes.getNamedItem("category");
document.write("Get the specified item value : ")
document.write(item_name.value);
</script>
</body>
</html>

Execution

Save this file as namednodemapmethod_item.htm on the server path (this file and
node_methods.xml should be on the same path in your server). We will get the output as
shown below:

Get the specified item value : Technical

NamedNodeMap Object Method- removeNameditem

Method removeNamedItem() removes a node specified by name.

Syntax

Following is the syntax for the usage of the removeNamedItem() method.

nodemapObject.removeNamedItem(name)

Parameter | Description

name This specifies the name of the node to remove. It is of typeDOMString.

134

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

This method returns the removed node.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee category="Technical”>
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the removeNamedItem() method:

<!DOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)

{
xhttp=new XMLHttpRequest();

135

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

else // code for IE5 and IE6 ‘
{ |
xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

y = xmlDoc.getElementsByTagName('Employee')[0].attributes;
document.write("Name of the attribute removed from 'category' : ")

document.write(y.removeNamedItem('category').nodeValue);

</script>
</body>
</html>

Execution

Save this file as namednodemapmethod_removenameditem.htm on the server path (this
file and node.xml should be on the same path in your server). We will get the output as
shown below:

Name of the attribute removed from 'category' : Technical

NamedNodeMap Object Method- removeNameditemNS

Method removeNamedItemNS() removes a node specified by the local name and the
namespace URI.

Syntax

Following is the syntax for the usage of the removeNamedItemNS() method.

nodemapObject.removeNamedItem(namespaceURI, localName)

136

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Parameter Description

namespaceURI | It is the namespaceURI of the node to remove. It is of typeDOMString.

localName It is the local name of the node to remove. It is of typeDOMString.

This method removes specified namespaceURI and the local name of the node or null if
they do not have any value.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical"”>
<e:FirstName e:language="English">Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

<n:FirstName>Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniymishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the removeNamedItemNS() method:

<!DOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
}
157
\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

else // code for IE5 and IE6
{

xhttp=new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);

xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc

loadXMLDoc("/dom/node_ns.xml");

xmlDoc

xmlDoc.getElementsByTagName('e:FirstName')[0].attributes;

document.write("Removed Item Attribute node is :- ");

document.write(xmlDoc.removeNamedItemNS("http://www.tutorials.com/technical/","
language').nodeName);

</script>
</body>
</html>

Execution

Save this file as namednodemapmethod_removenameditemns.htm on the server path
(this file and node_ns.xml should be on the same path in your server). We will get the
output as shown below:

Removed Item Attribute node is :- e:language

NamedNodeMap Object Method- setNameditem

Method setNamedItem() adds a node using its nodeName attribute. If a node with that
name is already present in this map, it is replaced by the new one.

138

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Syntax

Following is the syntax for the usage of the setNamedItem() method.

nodemapObject.setNamedItem(arg)

Parameter Description

This stores the node in the map. This node value can be accessed later

arg using the nodeName attribute. It is of type node.

This method returns the new updated value of the node if the existing node is replaced,
otherwise null is returned.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

139

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Following example demonstrates the usage of the setNamedItem() method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");
¢ = xmlDoc.createAttribute("category");
c.value = "TutorialsPoint";
y = xmlDoc.getElementsByTagName('Employee')[0].attributes;
y.setNamedItem(c);
document.write("Set named Item value is : ")
document.write(y.getNamedItem('category').nodeValue);
</script>
</body>
</html>

140

‘ tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Execution

Save this file as namednodemapmethod_setnameditem.htm on the server path (this file
and node.xml should be on the same path in your server). We will get the output as shown
below:

Set named Item value is : TutorialsPoint

NamedNodeMap Object Method- setNameditemNS

Method setNamedItemNS() adds a node using its nodeName attribute. If a node with that
name is already present in this map, it is replaced by the new one.

Syntax

Following is the syntax for the usage of the setNamedItemNS() method.

nodemapObject.setNamedItemNS(arg)

Parameter Description

arg This stores the node in the map. This node can be accessed later using
the values of its namespaceURI and localNameattribute. It is of
type node.

This method replaces the old node and returns the new node value.

Example

node_ns.xml contents are as below:

<?xml version ="1.0"?>
<Company>

<Employee xmlns:e = "http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:language="English">Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n ="http://www.tutorials.com/non-technical/" category="non-
technical">

<n:FirstName>Taniya</n:FirstName>
<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

141

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

‘ <n:Email>taniymishra@xyz.com</n:Email>
‘ </Employee>

‘ </Company>

Following example demonstrates the usage of the setNamedItemNS() method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");

C =
xmlDoc.createAttributeNS("http://www.tutorials.com/technical/", 'language’);

c.value = "CEO";
y = xmlDoc.getElementsByTagName('e:FirstName')[0].attributes;
y.setNamedItemNS(c);

document.write("Set named Item NS value is : ")

document.write(y.getNamedItemNS("http://www.tutorials.com/technical/", 'language
').nodeValue);

[mTY
I
N

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

‘ </script>

</body>
</html>

Execution

Save this file as namednodemapmethod_setnameditemns.htm on the server path (this file

and node_ns.xml should be on the same path in your server). We will get the output as
shown below:

Set named Item NS value is : CEO

143

\ tutorialspoint

PLYEASYLEARMNINEG

20. XML DOM — DOMImplementation Object

The DOMImplementation object provides a number of methods for performing operations
that are independent of any particular instance of the document object model.

Methods

Following table lists the methods of the DOMImplementation object:

Methods Description

It creates a DOM Document object

createDocument(namespaceURI, qualifiedName, of the specified type with its

doctype) document element.
createDocumentType(qualifiedName, publicld, It creates an
systemlId) empty DocumentTypenode.

This method returns a specialized
object which implements the
getFeature(feature, version) specialized APIs of the specified
feature and version. This has been
removed. Refer specs.

This method tests if the DOM
hasFeature(feature, version) implementation implements a
specific feature and version.

DOMImplementation Object Method- createdocument

The method createDocument () is used to create a DOM Document object of the specified
type with its document element.

Syntax

Following is the syntax of the createDocument () method.

Document doc = document.implementation.createDocument(namespaceURI,
qualifiedNameStr, documentType);

e namespaceURI is the namespace URI of the document element to be created or null.
e qualifiedName is the qualified name of the document element to be created or null.

e doctype is the type of document to be created or null.
144

tutorialspoint

SIMPLYEASYLEARMNINEG

https://dom.spec.whatwg.org/#domimplementation

XML DOM

e This method returns a new Document object with its document element.

Example

Following example demonstrates the usage of the createDocument () method:

<IDOCTYPE html>
<html>
<body>
<script>

var doc = document.implementation.createDocument
("http://www.w3.0rg/1999/xhtml"', 'html', null);

var body = document.createElementNS('http://www.w3.0rg/1999/xhtml",
'body');

body.setAttribute('id', 'Company');
doc.documentElement.appendChild(body);
document.write(doc.getElementById('Company')); // [object HTMLBodyElement]
</script>
</body>
</html>

Execution

Save this file as domimplementation_createdocument.htm on the server path (this file and
node.xml should be on the same path in your server).We will get the output as shown
below:

[object HTMLBodyElement]

DOMImplementation Object Method- createdocument

Method createDocumentType () is used to create an empty DocumentType node. Entity
declarations and notations are not made available.

Syntax

Following is the syntax of the createDocument() method.

Document doc = document.implementation.createDocumentType(qualifiedName,
publicId, systemId);

e qualifiedName is the qualified name of the document type to be created.
e publicld is the external subset public identifier.

e systemlId external subset system identifier.

145

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

e This method returns a new DocumentType node withNode.ownerDocument set to
null.

Example

Following example demonstrates the usage of the createDocumentType () method:

<!DOCTYPE html>
<html>
<body>
<script>

var dt = document.implementation.createDocumentType('svg:svg', '-
//W3C//DTD SVG 1.1//EN', 'http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd"');

var d =
document.implementation.createDocument('http://www.w3.0rg/2000/svg', 'svg:svg',
dt);

document.write(d.doctype.publicId); // -//W3C//DTD SVG 1.1//EN
</script>
</body>
</html>

Execution

Save this file as domimplementation_createdocumenttype.htm on the server path (this
file and node.xml should be on the same path in your server). We will get the output as
shown below:

-//W3C//DTD SVG 1.1//EN

DOMImplementation Object Method- hasFeature

Method hasFeature () tests if the DOM implementation implements a specific feature and
version as defined in DOM Features.

Syntax

Following is the syntax of hasFeature () method.

flag = document.implementation.hasFeature(feature, version);

146

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Parameter Description

feature It is a DOMString representing the feature name.

It is a DOMString representing the version of the specification defining the

version
feature.

Example

Following example demonstrates the usage of the hasFeature () method:

<!DOCTYPE html>
<html>

<body>
<script>
document.write(document.implementation.hasFeature('Core', '3.0"));
</script>
</body>
</html>

Execution

Save this file as domimplementation_hasfeature.htm on the server path. We will get the
output as shown below:

true

147

' tutorialspoint

PLYEASYLEARMNINEG

21. XML DOM — DocumentType Object

The DocumentType objects are the key to access the document's data and in the
document, the doctype attribute can have either the null value or the DocumentType
Object value. These DocumentType objects act as an interface to the entities described
for an XML document.

Attributes

The following table lists the attributes of the DocumentType object:

Attribute Type Description

It returns the name of the DTD which is written

name DOMString immediately next to the keyword 'DOCTYPE.

It returns a NamedNodeMap object containing
entities NamedNodeMap | the general entities, both external and internal,
declared in the DTD.

It returns a NamedNodeMap containing the

notations NamedNodeMap notations declared in the DTD.
It returns an internal subset as a string, or null

internalSubset DOMString if there is none. This has been removed. Refer
Specs.

publicld DOMString It returns the public identifier of the external
subset.

systemId DOMString It returns the system identifier of the external

subset. This may be an absolute URI or not.

DocumentType Object Attribute - name

The attribute name() returns the name of the DTD which is written immediately next to
the keyword !DOCTYPE.

Syntax

Following is the syntax for the usage of the name attribute.

documentObj.doctype.name

148

tutorialspoint

SIMPLYEASYLEARMNINEG

https://dom.spec.whatwg.org/#documenttype

XML DOM

Example

address_internal_dtd.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>
<!DOCTYPE address [

<!ELEMENT address (name, company, phone)>
<IELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA) >

<!ELEMENT phone (#PCDATA)>

1>

<address>

<name>Tanmay Patil</name >
<company>TutorialsPoint</company>
<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{

xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;

}

</script>
</head>
149
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

‘ <body>
‘ <script>

xmlDoc = loadXMLDoc("/dom/address_internal dtd.xml");

document.write("The name next to the keyword doctype is:"+
xmlDoc.doctype.name);

</script>
</body>
</html>

Execution

Save this file as documenttype_name.html on the server path (this file and
address_internal_dtd.xml should be on the same path in your server). We will get the
output as shown below:

The name next to the keyword doctype is: address

DocumentType Object Attribute - entities

The attribute entities return a NamedNodeMap object containing the general entities, both
external and internal, declared in the DTD.

Syntax

Following is the syntax for the usage of the entities attribute.

documentObj.doctype.entities

Example

address_internal_dtd.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>
<!DOCTYPE address [

<!ELEMENT address (name, company, phone)>

<!ELEMENT name (#PCDATA) >

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

1>

<address>

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

150

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

</address>

Following example demonstrates the usage of the entities attribute:

<!DOCTYPE html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
¥
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
¥
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/address_internal dtd.xml");

x = xmlDoc.doctype.entities;

document.write("Nodename is: + xmlDoc.nodeName);

document.write("
");

document.write(" nodetype is:

y = xmlDoc.documentElement;

document.write("Nodename is: + y.nodeName);

document.write("
");

document.write(" nodetype is:

</script>

+ xmlDoc.nodeType + "
");

+ y.nodeType + "
");

' tutorialspoint

PLYEASYLEARMNINEG

151

XML DOM

</body>
</html>

Execution

Save this file as documenttype_entities.htm/ on the server path (this file and
address_internal_dtd.xml should be on the same path in your server). We will get the
output as shown below:

Nodename is: #document
nodetype is: 9

Nodename is: address

nodetype is: 1

DocumentType Object Attribute - notation

The attribute notations containing the notations declared in the DTD.

Example

notation.xm/ contents are as below:

<?xml version = "1.0"?>
<!DOCTYPE address [
<!TELEMENT address (#PCDATA)>
<INOTATION name PUBLIC "Tanmay">
<IATTLIST address category NOTATION (name) #REQUIRED>

1>

Following example demonstrates the usage of the notations attribute:

<!DOCTYPE html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
152
tutorialspoint

PLYEASYLEARMNINEG

XML DOM

xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);

xhttp.send();

return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/notation.xml");
var notations = xmlDoc.doctype.notations;
document.write("notations: "+notations);
document.write("Item "+notations.getNamedItem('Tanmay'));
</script>
</body>
</html>

Execution

Save this file as documenttype_notations.html/ on the server path (this file and
notation.xml should be on the same path in your server).We will get the output as shown

below:

notations: undefined

This collection is very sparsely supported by browsers, but there's no other way to retrieve

this data.

DocumentType Object Attribute - publicld

The attribute publicld returns the public identifier of the external subset.

Syntax

Following is the syntax for usage of the publicld attribute.

document.doctype.publicId;

' tutorialspoint

PLYEASYLEARMNINEG

153

XML DOM

Example

notation.xm/ contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">
<address id="firstelement">

<name>Tanmay Patil</name >
<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the publicld attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXMmL;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");
document.write("publicid : "+xmlDoc.doctype.publicId);

</script>

154

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</body>
</html>

Execution

Save this file as documenttype_publicid.html on the server path (this file and notation.xml
should be on the same path in your server). We will get the output as shown below:

publicid : -//W3C//DTD XHTML 1.1//EN

DocumentType Object Attribute - systemid

The attribute systemlId returns the system identifier of the external subset. This may be
an absolute URI or not.

Syntax

Following is the syntax for the usage of the systemlId attribute.

document.doctype.systemId;

Example

notation.xm/ contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmll1.dtd">

<address id="firstelement">
<name>Tanmay Patil</name >
<company>TutorialsPoint</company>
<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the systemlId attribute:

<!DOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{

155

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{

xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);

xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");
document.write("SystemId : "+xmlDoc.doctype.systemId);
</script>
</body>
</html>

Execution

Save this file as documenttype systemld.html on the server path (this file and
notation.xml should be on the same path in your server). We will get the output as shown
below:

SystemId : http://www.w3.org/TR/xhtml11/DTD/xhtml11l.dtd

156

‘ tutorialspoint

PLYEASYLEARMNINEG

22. DOM — Processinglnstruction Object

ProcessinglInstruction gives that application-specific information which is generally
included in the prolog section of the XML document.

Processing instructions (PIs) can be used to pass information to applications. PIs can
appear anywhere in the document outside the markup. They can appear in the prolog,
including the document type definition (DTD), in textual content, or after the document.

A PI starts with a special tag <? and ends with ?>. Processing of the contents ends
immediately after the string ?> is encountered.

Attributes

The following table lists the attributes of the ProcessingInstruction object:

Attribute Type Description

It is a character that describes the information for the

data DOMString application to process immediately preceding the ?>.

This identifies the application to which the instruction or the

target DOMSINg | yata is directed.

Processinginstruction Object Attribute- data

The attribute data is a character that describes the information for the application to
process immediately preceding the ?>.

Syntax

Following is the syntax for the usage of the data attribute.

ProcessingInstruction.target

Parameter Description

data It is a character that describes the information for the application to
process immediately preceding the ?>.

157

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Example
Following example demonstrates the usage of the data attribute:

<!DOCTYPE html>
<html>
<head>
<script>
// loads the xml string in a dom object
function loadXMLString(t)
{
// for non IE browsers

if (window.DOMParser)

{

// create an instance for xml dom object
parser=new DOMParser();
xmlDoc=parser.parseFromString(t, "text/xml");

}

// code for IE

else

{

// create an instance for xml dom object
xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async=Ffalse;
xmlDoc.loadXML(t);

}

return xmlDoc;

}
function get_firstChild(p)

{
a = p.firstChild;
return a;
}
</script>
</head>
<body>
<script>
var xml="<Employee>";

xml=xml+"<FirstName>";

xml=xml+"<?piTarget piData more piData?>";

158

‘ tutorialspoint

PLYEASYLEARMNINEG

XML DOM

xml=xml+"</FirstName>";

xml=xml+"</Employee>";

// calls the loadXMLString() with "text" function and store the xml dom in
a variable

var xmlDoc=loadXMLString(xml);

var x = get firstChild(xmlDoc.getElementsByTagName("FirstName")[0]);
document.write("First child is : ");

document.write(x.nodeName);

//the following should be "piData more piData"
alert(x.data);

//the following should be "piTarget"
alert(x.target);
</script>
</body>
</html>

Execution

Save this file as dom_processinginstruction_data.htm on the server path. We will get the
output as shown below:

piData more piData

159

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Processinginstruction Object Attribute- target

Attribute target identifies the application to which the instruction or data is directed.

Syntax
Following is the syntax for the usage of the target attribute.

ProcessingInstruction.target

Parameter Description

target

Identifies the application to which the instruction or the data is directed.

Example
Following example demonstrates the usage of the target attribute:

<IDOCTYPE html>
<html>
<head>
<script>
// loads the xml string in a dom object
function loadXMLString(t)
{
// for non IE browsers

if (window.DOMParser)

{

// create an instance for xml dom object
parser=new DOMParser();
xmlDoc=parser.parseFromString(t, "text/xml");

}

// code for IE

else

{

// create an instance for xml dom object
xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
xmlDoc.async=false;

xmlDoc.loadXML(t);
}

return xmlDoc;

' tutorialspoint

PLYEASYLEARMNINEG

160

XML DOM

function get_firstChild(p)
{
a = p.firstChild;
return a;
}
</script>
</head>
<body>
<script>
var xml="<Employee>";
xml=xml+"<FirstName>";
xml=xml+"<?piTarget piData more piData?>";

xml=xml+"</FirstName>";

xml=xml+"</Employee>";

// calls the loadXMLString() with "text" function and store the xml dom in
a variable

var xmlDoc=loadXMLString(xml);

var x = get_firstChild(xmlDoc.getElementsByTagName("FirstName")[0]);
document.write("First child is : ");

document.write(x.nodeName);

//the following should be "piData more piData"
alert(x.data);

//the following should be "piTarget"
alert(x.target);
</script>
</body>
</html>

161

‘ tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Execution

Save this file as dom_processinginstruction_target.htm on the server path. We will get the
output as shown below:

piData more piData

162

tutorialspoint

SIMPLYEASYLEARMNINEG

23. DOM — Entity Object

Entity interface represents a known entity, either parsed or unparsed, in an XML document.
The nodeName attribute that is inherited from Node contains the name of the entity.

An Entity object does not have any parent node, and all its successor nodes are read-only.

Attributes

The following table lists the attributes of the Entity object:

Attribute Type Description

This specifies the encoding used by the
external parsed entity. Its value is null if it
is an entity from the internal subset or if it
is not known.

inputEncoding DOMString

For an unparsed entities, it gives the name
notationName DOMString | of the notation and its value is null for the
parsed entities.

It gives the name of the public identifier

publicld DOMString associated with the entity.

It gives the name of the system identifier

systemld DOMString associated with the entity.

It gives the xml encoding included as a part
xmlEncoding DOMString | of the text declaration for the external
parsed entity, null otherwise.

It gives the xml version included as a part
xmlVersion DOMString | of the text declaration for the external
parsed entity, null otherwise.

Entity Object Attribute- inputEncoding

Attribute inputEncoding specifies the encoding used by the external parsed entity. Its
value is null if it is an entity from the internal subset or if it is not known.

163

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Syntax

Following is the syntax for the usage of the inputEncoding attribute.

entityObj.inputEncoding

Example

note.xml contents are as below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Company>
<Employee category="Technical" id="firstelement">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the inputEncoding attribute:

<IDOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
164
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");
document.write("inputEncoding is : ")
document.write(xmlDoc.inputEncoding);
</script>
</body>
</html>

Execution

Save this file as entityattribute _inputencoding.htm on the server path (this file and
note.xml should be on the same path in your server). We will get the output as shown
below:

inputEncoding is : UTF-8

Entity Object Attribute- notationName

Attribute notationName gives the name of the notation and value for an unparsed entity.
For the parsed entities its value is null.

Syntax

Following is the syntax for the usage of the notationName attribute.

165

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Example

notation.xm/ contents are as below:

<?xml version="1.0"?>
<!DOCTYPE address [
<!TELEMENT address (#PCDATA)>
<INOTATION name PUBLIC "Tanmay">
<!ATTLIST address category NOTATION (name) #REQUIRED>

1>

Following example demonstrates the usage of the notationName attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/notation.xml");

x = xmlDoc.getElementsByTagName('address');

document.write("Name of the attribute notation is : ")

166

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

‘ document.write(x.item(@).attributes[0©].nodeName);
‘ document.write("
")

document.write("Value of the attribute notation is : ");

document.write(x.item(@).attributes[@].nodeValue);

</script>

</body>
</html>

Execution

Save this file as entityattribute_notations.htm on the server path (this file and
notation.xml should be on the same path in your server). We will get the output as shown
below:

Name of the attribute notation is : name

Value of the attribute notation is : Tanmay

Entity Object Attribute - publicid

The attribute publicld returns the public identifier of the associated entity or returns null.

Syntax
Following is the syntax for the usage of the publicld attribute.

document.doctype.publicId;

Example

notation.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">

<address id="firstelement">
<name>Tanmay Patil</name >
<company>TutorialsPoint</company>
<phone>(011) 123-4567</phone>

</address>

167

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Following example demonstrates the usage of the publicld attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");
document.write("publicid : "+xmlDoc.doctype.publicId);
</script>
</body>
</html>

Execution

Save this file as entity_publicid.html on the server path (this file and notation.xml should
be on the same path in your server). We will get the output as shown below:

publicid : -//W3C//DTD XHTML 1.1//EN

168

' tutorialspoint

PLYEASYLEARMNINEG

Entity Object Attribute - systemid

XML DOM

The attribute systemlId returns the system identifier of the associated entity or returns

null.

Syntax

Following is the syntax for the usage of the systemlId attribute.

document.doctype.systemId;

Example

notation.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmll1.dtd">

<address id="firstelement">
<name>Tanmay Patil</name >
<company>TutorialsPoint</company>
<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the systemlId attribute:

<IDOCTYPE html>
<html>
<head>

<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xhttp.open("GET",filename,false);
xhttp.send();

return xhttp.responseXML;

' tutorialspoint

PLYEASYLEARMNINEG

169

XML DOM

}
</script>
</head>
<body>

<script>

xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

document.write("SystemId : "+xmlDoc.doctype.systemId);
</script>
</body>
</html>

Execution

Save this file as entity_systemlId.htm! on the server path (this file and notation.xml should
be on the same path in your server). We will get the output as shown below:

SystemId : http://www.w3.org/TR/xhtml11/DTD/xhtml11l.dtd

Entity Object Attribute- xmIEncoding

Attribute xm/Encoding gives the xml encoding included as a part of the text declaration for
the external parsed entity, null otherwise.

Syntax

Following is the syntax for the usage of the xm/Encoding attribute.

entityObj.xmlEncoding

Example

node.xml contents are as below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

170

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the xm/Encoding attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

H
N
H

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

document.write("xmlEncoding is : ")
document.write(xmlDoc.xmlEncoding);
</script>
</body>
</html>

Execution

Save this file as entityattribute_xmlencoding.htm on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

xmlEncoding is : undefined

Entity Object Attribute - xmIVersion

Attribute xm/Version gives the xml version included as a part of the text declaration for
the external parsed entity, null otherwise.

Syntax

Following is the syntax for the usage of the xm/Version attribute.

entotyObj.xmlVersion

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

172

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the xm/Version attribute:

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6

{

xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);

xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node.xml");
document.write("xmlVersion is : ")
document.write(xmlDoc.xmlVersion);
</script>
</body>
</html>

\tutorialspoint

SIMPLYEASYLEARMNINEG

173

XML DOM

Execution

Save this file as entityattribute_xmlversion.htm on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

xmlVersion is : undefined

174

SIMPLYEASYLEARMNINEG

@"' tutorialspoint

24. XML DOM — Entity Reference Object

The EntityReference objects are the general entity references which are inserted into the
XML document providing scope to replace the text. The EntityReference Object does not

work for the pre-defined entities since they are considered to be expanded by the HTML
or the XML processor.

This interface does not have properties or methods of its own but inherits fromNode.

175
tutorialspoint

SIMPLYEASYLEARMNINEG

25. XML DOM — Notation Object

In this chapter, we will study about the XML DOM Notation object. The notation object
property provides a scope to recognize the format of elements with a notation attribute, a
particular processing instruction or a non-XML data. The Node Object properties and
methods can be performed on the Notation Object since that is also considered as a Node.

This object inherits methods and properties from Node. Its nodeName is the notation
name. Has no parent.

Attributes

The following table lists the attributes of the Notation object:

Attribute Type Description

It gives the name of the public identifier associated with the

publicID | DOMString notation.

It gives the name of the system identifier associated with the

systemID | DOMString notation

Notation Object Attribute - publiclD

The public identifier of a Notation; or null if no public identifier is specified.

Syntax
Following is the syntax for the usage of the publicID attribute.

var pubid = document.doctype.publicId;

Example

notation_xhtml.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmlll.dtd">

<address>
<name>Tanmay Patil</name >
<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

176

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</address>

Following example demonstrates the usage of the publicID attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

document.write("The publicId asscoiated with the notation is:"+
xmlDoc.doctype.publicId);

</script>
</body>
</html>

Execution

Save this file as notationattribute publicid.html on the server path (this file and
notation.xml should be on the same path in your server). We will get the output as shown
below:

The publicId asscoiated with the notation is: -//W3C//DTD XHTML 1.1//EN

177

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Notation Object Attribute - systemid

The system identifier of a Notation, or null if no system identifier is specified.

Syntax

Following is the syntax for the usage of the systemlId attribute.

var sysid = document.doctype.systemld;

Example

notation_xhtml.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtmll1.dtd">

<address>

<name>Tanmay Patil</name >
<company>TutorialsPoint</company>
<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the systemId attribute:

<IDOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{
xhttp=new XMLHttpRequest();

}
else // code for IES5 and IE6

{
xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();

return xhttp.responseXML;

178

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/notation_ xhtml.xml");

document.write("The systemId asscoiated with the notation is:"+
xmlDoc.doctype.systemld);

</script>
</body>
</html>

Execution

Save this file as notationattribute _systemsid.htm/ on the server path (this file and
notation.xml should be on the same path in your server). We will get the output as shown
below:

The systemId asscoiated with the notation
is:http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd

179

‘ tutorialspoint

PLYEASYLEARMNINEG

26. DOM — Element Object

The XML elements can be defined as building blocks of XML. Elements can behave as
containers to hold text, elements, attributes, media objects or all of these. Whenever
parser parses an XML document against the well-formedness, parser navigates through
an element node. An element node contains the text within it which is called the text node.

Element object inherits the properties and the methods of the Node object as element
object is also considered as a Node. Other than the node object properties and methods,
it has the following properties and methods.

Properties
The following table lists the attributes of the Element object:
Attribute Type Description
tagName DOMString | It gives the name of the tag for the specified element.

schemaTypelnfo | Typelnfo It represents the type information associated with this
element. This has been removed. Refer specs.

Element Object Attribute - tagname

The attribute tagname gives the name of the tag for the specified element.

Syntax

Following is the syntax for the usage of the tagname attribute.

elementObj.tagName

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>

<LastName>Patil</LastName>

180

tutorialspoint

SIMPLYEASYLEARMNINEG

https://dom.spec.whatwg.org/#interface-element

XML DOM

<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the tagname attribute:

<!DOCTYPE html>

<html>
<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;
x=xmlDoc.getElementsByTagName("Email")[0];
document.write("Tagname is :"+ x.tagName);
</script>
</body>

181

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

</html>

Execution

Save this file as elementattribute _tagname.html! on the server path (this file and node.xml
should be on the same path in your server).We will get the output as shown below:

Tagname is : Email

Methods

Below table lists the Element Object methods:

Methods

Type

Description

getAttribute()

DOMString

Retrieves the value of the
attribute if exists for the specified
element.

getAttributeNS()

DOMString

Retrieves an attribute value by
local name and namespace URI.

getAttributeNode()

Attr

Retrieves the name of the
attribute node from the current
element.

getAttributeNodeNS()

Attr

Retrieves an Attr node by local
name and namespace URI.

getElementsByTagName()

NodelList

Returns a NodeList of all
descendant Elements with a
given tag name, in document
order.

getElementsByTagNameNS()

NodelList

Returns a NodelList of all the
descendant Elements with a
given local name and namespace
URI in document order.

hasAttribute()

boolean

Returns true when an attribute
with a given name is specified on
this element or has a default
value, false otherwise.

' tutorialspoint

PLYEASYLEARMNINEG

182

XML DOM

hasAttributeNS()

boolean

Returns true when an attribute
with a given local name and
namespace URI is specified on
this element or has a default
value, false otherwise.

removeAttribute()

No Return Value

Removes an attribute by name.

removeAttributeNS

No Return Value

Removes an attribute by local
name and namespace URI.

removeAttributeNode()

Attr

Specified attribute node is
removed from the element.

setAttribute()

No Return Value

Sets a new attribute value to the
existing element.

setAttributeNS()

No Return Value

Adds a new attribute. If an
attribute with the same local
name and namespace URI is
already present on the element,
its prefix is changed to be the
prefix part of the qualifiedName,
and its value is changed to be the
value parameter.

Sets a new attribute node to the

setAttributeNode() Attr L
existing element.
Adds a new attribute. If an
attribute with that local name
setAttributeNodeNS Attr and that namespace URI is

already present in the element, it
is replaced by the new one.

setIdAttribute

No Return Value

If the parameter isld is true, this
method declares the specified
attribute to be a user-determined
ID attribute. This has been
removed. Refer specs.

setIdAttributeNS

No Return Value

If the parameter Id is true, this
method declares the specified
attribute to be a user-determined
ID attribute. This has been
removed. Refer specs.

' tutorialspoint

PLYEASYLEARMNINEG

183

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element

XML DOM

Element Object method - getAttribute

The getAttribute method gives the value of the attribute if it exists for a specified element.

Syntax

Following is the syntax for the usage of the getAttribute method.

elementObj.getAttribute(name)

Parameter Description

Name It holds the name of the attribute to retrieve.

This method returns the value of the attribute as a string if present, otherwise it will be
specified as null.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>

<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

184

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Following example demonstrates the usage of the getAttribute method:

<!DOCTYPE html>

<html>
<body>
<script>
if (window.XMLHttpRequest)
{
xmlhttp = new XMLHttpRequest();
}
else
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc=xmlhttp.responseXML;
x=xmlDoc.getElementsByTagName('Employee')[2];
document.write("The attribute is: ");
document.write(x.getAttribute('category'));
</script>
</body>
</html>
Execution

Save this file as elementattribute getattribute.htm/ on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

The attribute is: Management

Element Object Method - getAttributeNS

Method getAttributeNS retrieves an attribute value by local name and namespace URI.

Syntax
Following is the syntax for the usage of the getAttributeNS method.

elementObj.getAttributeNS(namespace, name)

185

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Parameter Description
namespace The namespace in which to look for the specified attribute.
name The name of the attribute to look for.
Example

node_ns.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>

<e:LastName>Patil</e:LastName>

<e:ContactNo>1234567890</e:ContactNo>

<e:Email>tanmaypatil@xyz.com</e:Email>
</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

<n:FirstName n:lang="en">Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniyamishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the getAttributeNS method:

<!DOCTYPE html>
<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
186
\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

else // code for IE5 and IE6

{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>
xmlDoc = loadXMLDoc("/dom/node_ns.xml");
x=xmlDoc.getElementsByTagName("FirstName")[0];
ns="http://www.tutorials.com/technical/";
document.write(x.getAttributeNS(ns,"lang"));
</script>
</body>
</html>

Execution

Save this file as elementattribute_getAttributeNS.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

en

Element Object method - getAttributeNode

The getAttributeNode method gives the name of the attribute node from the current
element.

Syntax
Following is the syntax for the usage of the getAttributeNode method.

elementObj.getAttributeNode(name)

Parameter Description

name It holds the name of the attribute to retrieve.

187

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

This method returns the value of the attribute node as a string if present, otherwise if
specified as null.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee category = "Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category = "Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category = "Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the getAttributeNode method:

<!DOCTYPE html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
188
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Employee');
document.write("Display all the attribute nodes ");
document.write("
");

for(i = 0;1 < x.length;i++)

{
y = x.item(i).getAttributeNode("category");
document.write(y.name);
document.write(" = ");
document.write(y.value);
document.write("
");
}
</script>
</body>
</html>
Execution

Save this file as elementattribute_getattributenode.html on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

Display all the attribute nodes

category = technical

‘ category = non-technical ‘

‘ category = Management ‘

189

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Element Object Method - getAttributeNodeNS

The method getAttributeNodeNS retrieves an Attr node by the local name and the

namespace URI.

Syntax

Following is the syntax for the usage of the getAttributeNodeNS method.

elementObj.getAttributeNodeNS(namespace,nodeName)

Parameter Description
namespace Is a string specifying the namespace of the attribute.
nodeName Is a string specifying the name of the attribute.

It returns an Attr node for specified attribute.

Example

node_ns.xml contents are as below:

<Company>

technical”>

</Company>

</Employee>

</Employee>

<?xml version="1.0"?>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>»1234567890</e:ContactNo>

<e:Email>tanmaypatil@xyz.com</e:Email>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-

<n:FirstName n:lang="en">Taniya</n:FirstName>
<n:LastName>Mishra</n:LastName>
<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniyamishra@xyz.com</n:Email>

' tutorialspoint

PLYEASYLEARMNINEG

190

Following example demonstrates the usage of the getAttributeNodeNS method:

XML DOM

<!DOCTYPE html>
<html>
<head>

<script>

{

}

</head>
<body>

<script>

</body>
</html>

</script>

xmlDoc

</script>

function loadXMLDoc(filename)

if (window.XMLHttpRequest)

{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();

return xhttp.responseXML;

= loadXMLDoc("/dom/node_ns.xml");

x=xmlDoc.getElementsByTagName("FirstName")[0];
ns="http://www.tutorials.com/technical/";

var attributenodens = x.getAttributeNodeNS(ns,"lang")
document.write("nodename: "+attributenodens.nodeName);

document.write("
nodevalue: "+attributenodens.nodeValue);

' tutorialspoint

PLYEASYLEARMNINEG

191

XML DOM

Execution

Save this file as elementattribute getAttributeNodeNS.htm on the server path (this file
and node_ns.xml should be on the same path in your server). We will get the output as
shown below:

nodename: e:lang

nodevalue: en

Element Object Method - getElementByTagName

The method getElementByTagName gives the value of the specified element.

Syntax

Following is the syntax for the usage of the getElementByTagName method.

getElementsByTagName(name)

Parameter Description

Name It holds the name of the attribute to retrieve.

This method returns the name of the tag.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category = "Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the getElementByTagName method:
192

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<!DOCTYPE html>

<html>
<body>
<div>
FirstName:
LastName:
Category:
</div>
<script>
if (window.XMLHttpRequest)
{// code for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp = new XMLHttpRequest();
}
else
{// code for IE6, IES
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.open("GET","/dom/node.xml",false);
xmlhttp.send();
xmlDoc = xmlhttp.responseXML;
document.getElementById("FirstName").innerHTML=
xmlDoc.getElementsByTagName("FirstName")[0].childNodes[@].nodeValue;
document.getElementById("LastName").innerHTML=
xmlDoc.getElementsByTagName("LastName")[0].childNodes[@].nodeValue;
document.getElementById("Employee").innerHTML=
xmlDoc.getElementsByTagName("Employee"”)[0@].attributes[@].nodeValue;
</script>
</body>
</html>
Execution

' tutorialspoint

PLYEASYLEARMNINEG

193

XML DOM

Save this file as elementattribute _getelementbytagname.htm on the server path (this file
and node_methods.xml should be on the same path in your server). We will get the output
as shown below:

FirstName: Tanmay
LastName: Patil

Category: technical

Element Object Method- getElementsByTagNameNS

Method getElementsByTagNameNS returns a Nodelist of all the descendant Elements with
a given local name and the namespace URI in document order.

Syntax
Following is the syntax for the usage of the getElementsByTagNameNS method.

elementObj.getElementsByTagNameNS (namespaceURI, localName)

Parameter Description

namespaceURI | Is the namespace URI of elements to look for.

localName Is either the local name of elements to look for or the special value "*",
which matches all elements.

It returns a new NodelList object containing all the matched Elements.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>

<e:LastName>Patil</e:LastName>

<e:ContactNo>1234567890</e:ContactNo>

<e:Email>tanmaypatil@xyz.com</e:Email>
</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

<n:FirstName n:lang="en">Taniya</n:FirstName>

194

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniyamishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the setAttributeNodeNS method:

<!DOCTYPE html>

<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
¥
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
¥
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");
ns="http://www.tutorials.com/technical/";
x = xmlDoc.getElementsByTagNameNS(ns, 'FirstName');
document.write(x[@].nodeName); // returns: e:FirstName
</script>
</body>
</html>

Execution

' tutorialspoint

PLYEASYLEARMNINEG

195

XML DOM

Save this file as elementattribute_getElementsByTagNameNS.htm on the server path (this
file and node_ns.xml should be on the same path in your server). We will get the output

as shown below:

e:FirstName

Element Object Method- hasAttribute

The Method hasAttribute returns true when an attribute with a given name is specified on

this element or has a default value, false if otherwise.

Syntax

Following is the syntax for the usage of the hasAttribute method.

elementObj.hasAttributeNS (attName)

Parameter Description

attName It is a string representing the name of the attribute.

It returns a Boolean true or false.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-

technical">
<n:FirstName n:lang="en">Taniya</n:FirstName>
<n:LastName>Mishra</n:LastName>
<n:ContactNo>1234667898</n:ContactNo>
<n:Email>taniyamishra@xyz.com</n:Email>

</Employee>

' tutorialspoint

PLYEASYLEARMNINEG

196

XML DOM

</Company>

Following example demonstrates the usage of the hasAttribute method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");
x = xmlDoc.getElementsByTagName("Employee")[0];

document.write("value for hasattribute is:
"+x.hasAttribute("category"));

</script>
</body>
</html>

197

‘ tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Execution

Save this file as elementattribute hasAttribute.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

value for hasattribute is: true

Element Object Method- hasAttribute

The method hasAttribute returns true when an attribute with a given name is specified on
this element or has a default value, false if otherwise.

Syntax

Following is the syntax for the usage of the hasAttribute method.

elementObj.hasAttributeNS(namespace,localName)

Parameter Description
namespace Is a string specifying the namespace of the attribute.
localName Is the name of the attribute.

It returns a Boolean true or false.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>

<e:LastName>Patil</e:LastName>

<e:ContactNo>1234567890</e:ContactNo>

<e:Email>tanmaypatil@xyz.com</e:Email>
</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical"”>

<n:FirstName n:lang="en">Taniya</n:FirstName>
<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

198

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<n:Email>taniyamishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the hasAttributeNS method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");
ns="http://www.tutorials.com/technical/";
x = xmlDoc.getElementsByTagName("FirstName")[0];

document.write("value for hasattribute is:
"+x.hasAttributeNS(ns,"lang"));

</script>
</body>
</html>

Execution

199

‘ tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Save this file as elementattribute_hasAttributeNS.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

value for hasattribute is: true

Element Object Method - removeAttribute

The method removeAttribute specifies that the attribute value is removed from the
element.

Syntax

Following is the syntax for the usage of the removeAttribute method.

elementObj.removeAttribute(name)

Parameter Description

name It holds the name of the attribute to retrieve.

This method removes the specified name of the tag.

Example

node.xml contents are as below:

<?xml version = "1.0"?>
<Company>
<Employee category = "Technical">

<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category = "Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category = "Management">
<FirstName>Tanisha</FirstName>

<LastName>Sharma</LastName>

200

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the removeAttribute method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");
x = xmlDoc.getElementsByTagName('Employee');

document.write("Before removing the attribute: ");
document.write(x[1].getAttribute('category'));

document.write("
");

x[1].removeAttribute('category');

' tutorialspoint

PLYEASYLEARMNINEG

201

XML DOM

document.write("After removing the attribute: ");
document.write(x[1].getAttribute('category'));
</script>
</body>
</html>

Execution

Save this file as elementattribute_removeattribute.htm on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

Before removing the attribute: non-technical

After removing the attribute: null

Element Object Method- removeAttributeNS

The method removeAttributeNS removes an attribute by the local name and the
namespace URI.

Syntax

Following is the syntax for the usage of the removeAttributeNS method.

elementObj.removeAttributeNS(namespace, attrName)

Parameter Description

namespace | Is a string specifying the namespace of the attribute.

attrName Is a string that names the attribute to be removed from the current node.

It returns an Attr node for the specified attribute.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>

<e:LastName>Patil</e:LastName>

202

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>
</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical"”>

<n:FirstName n:lang="en">Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<n:ContactNo>1234667898</n:ContactNo>

<n:Email>taniyamishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the removeAttributeNS method:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");
x=xmlDoc.getElementsByTagName("FirstName")[0];

ns="http://www.tutorials.com/technical/";

203

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

‘ document.write("Before removing the attributeNS: ");
‘ document.write(x.getAttributeNS(ns,"lang"));

x.removeAttributeNS(ns,"lang");
document.write("
After removing the attributeNS: ");
document.write(x.getAttributeNS(ns,"lang"));
</script>
</body>
</html>

Execution

Save this file as elementattribute_removeAttributeNS.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

Before removing the attributeNS: en

After removing the attributeNS: null

Element Object method - removeAttributeNode

The removeAttributeNode method specifies attribute node that is removed from the
element.

Syntax

Following is the syntax for the usage of the removeAttributeNode method.

elementObj.removeAttributeNode(oldAttr)

Parameter Description

oldAttr It removes the specified attribute value from the attribute list.

This method removes the attribute node.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category = "Technical">

<FirstName>Tanmay</FirstName>

204

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category = "Non-Technical">

<FirstName>Taniya</FirstName>

<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category = "Management">

<FirstName>Tanisha</FirstName>

<LastName>Sharma</LastName>

<ContactNo>»1234562350</ContactNo>

<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

Following example demonstrates the usage of the removeAttributeNode method:

<!DOCTYPE html>

<head>

<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
205
tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

<body>

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

x=xmlDoc.getElementsByTagName('Employee');

for (i = 0;i < x.length;i++)

{
while (x[i].attributes.length > 0)
{
y = x[i].attributes[0];
z = x[i].removeAttributeNode(y);
document.write("Removed : " + z.nodeName)
document.write(": " + z.nodeValue)
document.write("
")
}
}
</script>
</body>
</html>
Execution

Save this file as elementattribute_removeAttributeNode.htm! on the server path (this file
and node.xml should be on the same path in your server). We will get the output as shown
below:

Removed : category: technical
Removed : category: non-technical

Removed : category: Management

Element Object method - setAttribute

The setAttribute method sets a new attribute value to the existing element.

Syntax

Following is the syntax for usage of the setAttribute method.

elementObj.setAttribute(name)

206

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Parameter Description

name It holds the name of the attribute to retrieve.

This method returns the updated value of the attribute.

Example

node.xml contents are as below:

<?xml version = "1.0"?>
<Company>
<Employee category = "Technical"”>

<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category = "Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category = "Management">
<FirstName>Tanisha</FirstName>

<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the setAttribute method:

<!DOCTYPE html>
<head>
<script>
function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

\tutorialspoint

SIMPLYEASYLEARMNINEG

207

XML DOM

{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Employee');
for(i = 0;1i < x.length;i++)
{

x.item(i).setAttribute("category","HR");

document.write("Values of all attribute after using setattribute method: ");
for (i = 0;1 < x.length;i++)

{

document.write(x[i].getAttribute('category'));
document.write("
");
}
</script>

</body>

</html>

Execution

Save this file as elementattribute_setAttribute.htm/ on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

208

‘ tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Values of all attribute after using setattribute method:

HR
‘ HR

‘HR

Element Object Method - setAttributeNS

Method setAttributeNS adds a new attribute. If an attribute with the same local name and
the namespace URI is already present on the element, its prefix is changed to be the prefix
part of the qualifiedName, and its value is changed to be the value parameter.

Syntax
Following is the syntax for the usage of the setAttributeNS method.

elementObj.setAttributeNS(namespace, name,value)

Parameter Description

namespace Is a string specifying the namespace of the attribute.
name Is a string identifying the attribute to be set.

value Is the desired string value of the new attribute.
Example

node_ns.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>
<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

technical"”>
<n:FirstName n:lang="en">Taniya</n:FirstName>

<n:LastName>Mishra</n:LastName>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-

' tutorialspoint

PLYEASYLEARMNINEG

209

XML DOM

<n:ContactNo>1234667898</n:ContactNo>
<n:Email>taniyamishra@xyz.com</n:Email>

</Employee>

</Company>

Following example demonstrates the usage of the setAttributeNS method:

<!DOCTYPE html>

<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename, false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");
X = xmlDoc.getElementsByTagName('FirstName')[0];
ns="http://www.tutorials.com/technical/";
document.write("Before using setattributeNS method: ");
document.write(x.getAttributeNS(ns,"lang"));
x.setAttributeNS(ns, "lang","DE");
document.write("
After using setattributeNS method:
document.write(x.getAttributeNS(ns,"lang"));

</script>

</body>

")

\tutorialspoint

SIMPLYEASYLEARMNINEG

N

D

XML DOM

</html>

Execution

Save this file as elementattribute setAttributeNS.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

Before using setattributeNS method: en

After using setattributeNS method: DE

Element Object method - setAttributeNode

The setAttributeNode method sets a new attribute node to the existing element.

Syntax

Following is the syntax for the usage of the setAttributeNode method.

elementObj.setAttributeNode(newAttr)

Parameter Description

newAttr A new attribute node is added in the attribute list.

This method adds a new attribute node.

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category = "Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category = "Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

211

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

</Employee>
<Employee category = "Management">

<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the setAttributeNode method:

<!DOCTYPE html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");
x = xmlDoc.createAttribute("City");

X.nodeValue = "fourth";

y = xmlDoc.getElementsByTagName("Email");
y[@].setAttributeNode(x);

N
R
N

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

document.write("City attribute is been set at the place: ");
document.write(y[0].getAttribute("City"));

</script>
‘ </body>

‘ </html>

Execution

Save this file as elementattribute _setAttributeNode.html on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown
below:

Display all the attribute nodes
category = technical
category = non-technical

category = Management

Element Object Method - setAttributeNodeNS

Method setAttributeNodeNS adds a new attribute. If an attribute with that local name and
that namespace URI is already present in the element, it is replaced by the new one.

Syntax
Following is the syntax for the usage of the setAttributeNodeNS method.

elementObj.setAttributeNodeNS (newAttr)

Parameter Description

newAttr The Attr node to add to the attribute list.

It returns a replaced Attr node.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

<e:FirstName e:lang="en">Tanmay</e:FirstName>

213

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

<e:LastName>Patil</e:LastName>
<e:ContactNo>1234567890</e:ContactNo>
<e:Email>tanmaypatil@xyz.com</e:Email>
</Employee>
<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical"”>
<n:FirstName n:lang="en">Taniya</n:FirstName>
<n:LastName>Mishra</n:LastName>
<n:ContactNo>1234667898</n:ContactNo>
<n:Email>taniyamishra@xyz.com</n:Email>
</Employee>

</Company>

Following example demonstrates the usage of the setAttributeNodeNS method:

<!DOCTYPE html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
xhttp = new XMLHttpRequest();
}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node_ns.xml");
x1 = xmlDoc.getElementsByTagName('FirstName')[0O];
x2 = xmlDoc.getElementsByTagName('FirstName')[1];

214

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

ns="http://www.tutorials.com/technical/";
var nsattr = x1.getAttributeNodeNS(ns, "lang");
x2.setAttributeNodeNS(nsattr.cloneNode(true));

document.write(x2.attributes[1].value); // returns: 'en

</script>
‘ </body>

‘ </html>

Execution

Save this file as elementattribute setAttributeNodeNS.htm on the server path (this file
and node_ns.xml should be on the same path in your server). We will get the output as
shown below:

en

215

‘ tutorialspoint

PLYEASYLEARMNINEG

27. XML DOM — Attribute Object

Attr interface represents an attribute in an Element object. Typically, the allowable values
for the attribute are defined in a schema associated with the document. Attr objects are
not considered as part of the document tree since they are not actually child nodes of the
element they describe. Thus for the child
nodes parentNode, previousSibling and nextSibling the attribute value is null.

Attributes
The following table lists the attributes of Attribute object:
Attribute Type Description
name DOMString | This gives the name of the attribute.
cce It is a boolean value which returns true if the attribute
specified boolean

value exists in the document.

value DOMString | Returns the value of the attribute.

It gives the node to which attribute is associated or null

ownerElement | Element if attribute is not in use.

It returns whether the attribute is known to be of type

isId boolean ID (i.e. to contain an identifier for its owner element) or
not.
Attribute Object Attribute - name

The attribute name represents the name of the attribute.

Syntax

Following is the syntax for the usage of the name attribute.

attrObject.name

216

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
}
else // code for IE5 and IE6
{
217
\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp=new ActiveXObject("Microsoft.XMLHTTP"); ‘
) |
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");
X = xmlDoc.getElementsByTagName('Employee');

document.write("Name of the attribute is : ");
document.write(x.item(®@).attributes[@].name);
</script>
</body>
</html>

Execution

Save this file as domattribute _name.html/ on the server path (this file and node.xml should
be on the same path in your server). We will get the output as shown below:

Name of the attribute is : category

Attribute Object Attribute - specified

The attribute specified is a boolean value which returns true if the attribute value exists in
the document.

Syntax

Following is the syntax for the usage of the specified attribute.

attrObject.specified

218

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>
<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();

}
else // code for IE5 and IE6

219

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Employee');

document.write("True if attribute is present else false : ");
document.write(x.item(@).attributes[0].specified);
</script>
</body>
</html>

Execution

Save this file as domattribute_specified.htm/ on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

True if attribute is present else false : true

Attribute Object Attribute - value

The attribute value returns the value of the attribute.

Syntax

Following is the syntax for the usage of the value attribute.

attrObject.value

220

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
}
else // code for IE5 and IE6
{
221
\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>

<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Employee');

document.write("Value of attribute is : ");

document.write(x.item(®@).attributes[@].value);

</script>
</body>
</html>

Execution

Save this file as domattribute_value.html on the server path (this file and node.xml should
be on the same path in your server). We will get the output as shown below:

Value of attribute is : Technical

Attribute Object Attribute - ownerElement

The attribute ownerElement gives the node to which attribute is associated or null if the
attribute is not in use.

Syntax

Following is the syntax for the usage of the value attribute.

attrObject.ownerElement

222

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>
<head>
<script>
function loadXMLDoc(filename)
{
if (window.XMLHttpRequest)
{
xhttp=new XMLHttpRequest();
}
else // code for IE5 and IE6
{
223
\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

xhttp=new ActiveXObject("Microsoft.XMLHTTP"); ‘
) |
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>
<body>

<script>
xmlDoc = loadXMLDoc("/dom/node.xml");

X = xmlDoc.getElementsByTagName('Employee');

document.write("Owner is : ");
document.write(x.item(@).attributes[@].ownerElement);

document.write("
");

document.write("Owner Name of attribute node is : ");

document.write(x.item(@).attributes[0].ownerElement.nodeName);

</script>
</body>
</html>

Execution

Save this file as domattribute_ownerelement.htm/ on the server path (this file and
node.xml should be on the same path in your server). We will get the output as shown
below:

Owner is : [object Element]

Owner Name of attribute node is : Employee

224

' tutorialspoint

PLYEASYLEARMNINEG

Attribute Object Attribute - isld

XML DOM

The attribute JjsId returns whether the attribute is known to be of type ID (i.e., to contain

an identifier for its owner element) or not.

Syntax

Following is the syntax for the usage of the specified attribute.

attrObject.isId

Example

node.xml contents are as below:

<?xml version="1.0"?>
<Company>
<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>
<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>
</Employee>
<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>
</Employee>
</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>
<html>
<head>

<script>

\tutorialspoint

SIMPLYEASYLEARMNINEG

225

XML DOM

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)

{

xhttp=new XMLHttpRequest();

}
else // code for IE5 and IE6

{
xhttp=new ActiveXObject("Microsoft.XMLHTTP");

}
xhttp.open("GET",filename,false);
xhttp.send();
return xhttp.responseXML;
}
</script>
</head>

<body>
<script>

xmlDoc = loadXMLDoc("/dom/node.xml");

x = xmlDoc.getElementsByTagName('Employee');

document.write("Specifies if attribute have the ID specified for its
owner element or not : ");

document.write("
");
document.write(x.item(@).attributes[0].isId);
</script>
</body>
</html>

Execution

Save this file as domattribute_specified.html on the server path (this file and node.xml
should be on the same path in your server). We will get the output as shown below:

Specifies if attribute have the ID specified for its owner element or not
undefined

226

‘ tutorialspoint

PLYEASYLEARMNINEG

28. XML DOM — CDATASection Object

In this chapter, we will study about the XML DOM CDATASection Object. The text present
within an XML document is parsed or unparsed depending on what it is declared. If the
text is declared as Parse Character Data (PCDATA), it is parsed by the parser to convert
an XML document into an XML DOM Object. On the other hand, if the text is declared as
the unparsed Character Data (CDATA) the text within is not parsed by the XML parser.
These are not considered as the markup and will not expand the entities.

The purpose of using the CDATASection object is to escape the blocks of text containing
characters that would otherwise be regarded as markup. "]]1>", this is the only delimiter
recognized in a CDATA section that ends the CDATA section.

The CharacterData.data attribute holds the text that is contained by the CDATA section.
This interface inherits the CharatcterData interface through the Textinterface.

There are no methods and attributes defined for the CDATASection object. It only directly
implements the Text interface.

227

tutorialspoint

SIMPLYEASYLEARMNINEG

29. XML DOM — Comment Object

In this chapter, we will study about the Comment object. Comments are added as notes
or the lines for understanding the purpose of an XML code. Comments can be used to
include related links, information and terms. These may appear anywhere in the XML code.

The comment interface inherits the CharacterData interface representing the content of
the comment.

Syntax

XML comment has the following syntax:

A comment starts with <!-- and ends with -->. You can add textual notes as comments
between the characters. You must not nest one comment inside the other.

There are no methods and attributes defined for the Comment object. It inherits those of
its parent, CharacterData, and indirectly those of Node.

228

tutorialspoint

SIMPLYEASYLEARMNINEG

30. XML DOM — XMLHttpRequest Object

XMLHttpRequest object establishes a medium between a web page's client-side and
server-side that can be used by the many scripting languages like JavaScript, JScript,
VBScript and other web browser to transfer and manipulate the XML data.

With the XMLHttpRequest object it is possible to update the part of a web page without
reloading the whole page, request and receive the data from a server after the page has
been loaded and send the data to the server.

Syntax
An XMLHttpRequest object can be instatiated as follows:

xmlhttp = new XMLHttpRequest();

To handle all browsers, including IE5 and IE6, check if the browser supports the
XMLHttpRequest object as below:

if(window.XMLHttpRequest) // for Firefox, IE7+, Opera, Safari, ...
{
xmlHttp = new XMLHttpRequest();
}
else if(window.ActiveXObject) // for Internet Explorer 5 or 6
{
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}

Examples to load an XML file using the XMLHttpRequest object can be referredhere.

Methods
The following table lists the methods of the XMLHttpRequest object:
Methods Description
abort() Terminates the current request made.

Returns all the response headers as a

getAllResponseHeaders() string, or null if no response has been
received.
getResponseHeader() Returns the string Containing the text Of

the specified header, or null if either the

229

tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

response has not yet been received or the
header doesn't exist in the response.

open(method,url,async,uname,pswd)

It is used in conjugation with the Send
method to send the request to the server.
The Open method specifies the following
parameters:

method: specifies the type of request i.e.
Get or Post.

url: it is the location of the file.

async: indicates how the request should
be handled. It is boolean value. where,

'true' means the request is processed
asynchronously without waiting for a Http
response.

'false' means the request is processed
synchronously after receiving the Http
response.

uname: is the username.

pswd: is the password.

send(string)

It is used to send the request working in
conjugation with the Open method.

Header contains the label/value pair to

setRequestHeader() which the request is sent.
Attributes
The following table lists the attributes of the XMLHttpRequest object:
Attribute Description
onreadystatechange f:th;sn:en. event based property which is set on at every state
This describes the present state of the XMLHttpRequest
object. There are five possible states of the readyState
property:
readyState=0 : means request is yet to initialize.
readyState readyState=1 : request is set.
readyState=2 : request is sent.
readyState=3 : request is processing.
readyState=4 : request is completed.

' tutorialspoint

PLYEASYLEARMNINEG

230

XML DOM

This property is used when the response from the server is a
responseText .
text file.
responseXML This property is used when the response from the server is an
XML file.
Gives the status of the Http request object as a number. For
Status n n n n
example, "404" or "200".
statusText Gives the"status of t"he I:ilttpllrequest object as a string. For
example, "Not Found" or "OK".
Examples

node.xml contents are as below:

<?xml version="1.0"?>
<Company>

<Employee category="Technical">
<FirstName>Tanmay</FirstName>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">
<FirstName>Taniya</FirstName>
<LastName>Mishra</LastName>
<ContactNo>1234667898</ContactNo>
<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">
<FirstName>Tanisha</FirstName>
<LastName>Sharma</LastName>
<ContactNo>1234562350</ContactNo>
<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

231

\tutorialspoint

SIMPLYEASYLEARMNINEG

XML DOM

Retrieve specific information of a resource file

Following example demonstrates how to retrive specific information of a resource file using
the method getResponseHeader() and the property readState.

<!DOCTYPE html>
<html>
<head>

<meta http-equiv="content-type" content="text/html; charset=iso-8859-2"
/>

<script>

function loadXMLDoc()

{
var xmlHttp = null;
if(window.XMLHttpRequest) // for Firefox, IE7+, Opera, Safari,
{
xmlHttp = new XMLHttpRequest();
}
else if(window.ActiveXObject) // for Internet Explorer 5 or 6
{
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
}
return xmlHttp;
}

function makerequest(serverPage, myDiv)
{
var request = loadXMLDoc();
request.open("GET", serverPage);

request.send(null);

request.onreadystatechange = function()
{
if (request.readyState == 4)

{

document.getElementById(myDiv).innerHTML =
request.getResponseHeader("Content-length");

}

232

' tutorialspoint

PLYEASYLEARMNINEG

XML DOM

}
</script>
</head>
<body>

<button type="button" onclick="makerequest('/dom/node.xml', 'ID')">Click
me to get the specific ResponseHeader</button>

<div id="ID">Specific header information is returned.</div>
</body>
</html>

Execution

Save this file as elementattribute _removeAttributeNS.htm on the server path (this file and
node_ns.xml should be on the same path in your server). We will get the output as shown
below:

Before removing the attributeNS: en

After removing the attributeNS: null

Retrieve header infomation of a resource file

Following example demonstrates how to retrieve the header information of a resource file,
using the method getAllIResponseHeaders() using the property readyState.

<!DOCTYPE html>
<html>
<head>

<meta http-equiv="content-type" content="text/html; charset=iso-8859-2"
/>

<script>

function loadXMLDoc()

{
var xmlHttp = null;
if(window.XMLHttpRequest) // for Firefox, IE7+, Opera, Safari,
{
xmlHttp = new XMLHttpRequest();
}
else if(window.ActiveXObject) // for Internet Explorer 5 or 6
{
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
233
tutorialspoint

PLYEASYLEARMNINEG

XML DOM

return xmlHttp;

function makerequest(serverPage, myDiv)

{
var request = loadXMLDoc();
request.open("GET", serverPage);
request.send(null);
request.onreadystatechange = function()
{

if (request.readyState == 4)

{

document.getElementById(myDiv).innerHTML =
request.getAllResponseHeaders();

}
}
}
</script>
</head>
<body>

<button type="button" onclick="makerequest('/dom/node.xml', "ID")">Click
me to load the AllResponseHeaders</button>

<div id="ID"></div>
</body>
</html>

Execution

Save this file as http_allheader.html on the server path (this file and node.xml should be
on the same path in your server). We will get the output as shown below (depends on the
browser):

Date: Sat, 27 Sep 2014 07:48:07 GMT Server: Apache Last-Modified: Wed, ©3 Sep

2014 06:35:30 GMT Etag: "464bf9-2af-50223713b8a60" Accept-Ranges: bytes Vary:

Accept-Encoding,User-Agent Content-Encoding: gzip Content-Length: 256 Content-
Type: text/xml

234

' tutorialspoint

PLYEASYLEARMNINEG

31. XML DOM — DOMException Object

The DOMException represents an abnormal event happening when a method or a property

is used.

Properties

Below table lists the properties of the DOMException object

Property

Description

name Returns a DOMString that contains one of the string associated with an error
constant (as seen the table below).

Error Types

Type

Description

IndexSizeError

The index is not in the allowed range. For example,
this can be thrown by the Range object. (Legacy code
value: 1 and legacy constant name:
INDEX_SIZE_ERR)

HierarchyRequestError

The node tree hierarchy is not correct. (Legacy code
value: 3 and legacy constant name:
HIERARCHY_REQUEST_ERR)

WrongDocumentError

The object is in the wrong document. (Legacy code
value: 4 and legacy constant name:
WRONG_DOCUMENT_ERR)

InvalidCharacterError

The string contains invalid characters. (Legacy code
value: 5 and legacy constant name:
INVALID_CHARACTER_ERR)

NoModificationAllowedError

The object can not be modified. (Legacy code value: 7
and legacy constant name:
NO_MODIFICATION_ALLOWED_ERR)

NotFoundError

The object cannot be found here. (Legacy code value:
8 and legacy constant name: NOT_FOUND_ERR)

tutorialspoint

SIMPLYEASYLEARMNINEG

235

XML DOM

NotSupportedError

The operation is not supported. (Legacy code value: 9
and legacy constant name: NOT_SUPPORTED_ERR)

InvalidStateError

The object is in an invalid state. (Legacy code value:
11 and legacy constant name: INVALID_STATE_ERR)

SyntaxError

The string did not match the expected pattern.
(Legacy code value: 12 and legacy constant name:
SYNTAX_ERR)

InvalidModificationError

The object cannot be modified in this way. (Legacy
code value: 13 and legacy constant name:
INVALID_MODIFICATION_ERR)

NamespaceError

The operation is not allowed by Namespaces in XML.
(Legacy code value: 14 and legacy constant name:
NAMESPACE_ERR)

InvalidAccessError

The object does not support the operation or
argument. (Legacy code value: 15 and legacy
constant name: INVALID_ACCESS_ERR)

TypeMismatchError

The type of the object does not match the expected
type. (Legacy code value: 17 and legacy constant
name: TYPE_MISMATCH_ERR) This value is
deprecated, the JavaScript TypeError exception is now
raised instead of a DOMException with this value.

SecurityError

The operation is insecure. (Legacy code value: 18 and
legacy constant name: SECURITY_ERR)

NetworkError

A network error occurred. (Legacy code value: 19 and
legacy constant name: NETWORK_ERR)

AbortError

The operation was aborted. (Legacy code value: 20
and legacy constant name: ABORT_ERR)

URLMismatchError

The given URL does not match another URL. (Legacy
code value: 21 and legacy constant name:
URL_MISMATCH_ERR)

QuotaExceededError

The quota has been exceeded. (Legacy code value: 22
and legacy constant name: QUOTA_EXCEEDED_ERR)

' tutorialspoint

PLYEASYLEARMNINEG

236

XML DOM

The operation timed out. (Legacy code value: 23 and

TimeoutError legacy constant name: TIMEOUT_ERR)

The node is incorrect or has an incorrect ancestor for
InvalidNodeTypeError this operation. (Legacy code value: 24 and legacy
constant name: INVALID_NODE_TYPE_ERR)

The object cannot be cloned. (Legacy code value: 25

DataCloneError and legacy constant name: DATA_CLONE_ERR)

The encoding operation, being an encoding or a
EncodingError decoding one, failed (No legacy code value and
constant name).

The input/output read operation failed (No legacy code

NotReadableError
value and constant name).

Example

Following example demonstrates how using a not well-formed XML document causes a
DOMException.

error.xml contents are as below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Company id="companyid">
<Employee category="Technical" id="firstelement" type="text/html">
<FirstName>Tanmay</first>
<LastName>Patil</LastName>
<ContactNo>1234567890</ContactNo>
<Email>tanmaypatil@xyz.com</Email>
</Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<html>
<head>
<script>

function loadXMLDoc(filename)

{
if (window.XMLHttpRequest)
{
237
tutorialspoint

PLYEASYLEARMNINEG

XML DOM

xhttp = new XMLHttpRequest();

}
else // code for IE5 and IE6
{
xhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

xhttp.open("GET",filename,false);
xhttp.send();

return xhttp.responseXML;

}
</script>
</head>
<body>
<script>
try{
xmlDoc = loadXMLDoc("/dom/error.xml");
var node = xmlDoc.getElementsByTagName("to").item(®@);
var refnode = node.nextSibling;
var newnode = xmlDoc.createTextNode('That is why you fail.');
node.insertBefore(newnode, refnode);
}
catch(err){
document.write(err.name);
}
</script>
</body>
</html>
Execution

Save this file as domexcption_name.html on the server path (this file and error.xml should
be on the same path in your server). We will get the output as shown below:

TypeError

238

‘ tutorialspoint

PLYEASYLEARMNINEG

