

XML DOM

 1

About the Tutorial

The Document Object Model (DOM) is a W3C standard. It defines a standard for accessing

documents like HTML and XML.

This tutorial will teach you the basics of XML DOM. The tutorial is divided into sections

such as XML DOM Basics, XML DOM Operations and XML DOM Objects. Each of these

sections contain related topics with simple and useful examples.

Audience

This reference has been prepared for the beginners to help them understand the basic-to-

advanced concepts related to XML DOM. This tutorial will give you enough understanding

on XML DOM from where you can take yourself to a higher level of expertise.

Prerequisites

Before proceeding with this tutorial you should have basic knowledge of XML, HTML and

Javascript.

Disclaimer & Copyright

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

XML DOM

 2

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Disclaimer & Copyright ... i
Table of Contents .. ii

1. XML DOM – Overview ... 1
Advantages of XML DOM .. 1
Disadvantages of XML DOM .. 2

2. XML DOM — Model .. 3

3. XML DOM — Nodes .. 5

4. XML DOM — Node Tree .. 7

5. XML DOM − Methods .. 9

6. XML DOM — Loading .. 11
Parser ... 11
Loading and Parsing XML ... 12
Content as XML file.. 12
Content as XML string ... 14

7. XML DOM — Traversing .. 17

8. XML DOM — Navigation ... 20
DOM − Parent Node .. 21
First Child ... 22
Last Child ... 23
Next Sibling .. 24
Previous Sibling ... 25

9. XML DOM — Accessing ... 27
Accessing Nodes .. 27
getElementsByTagName () .. 27
Traversing through Nodes ... 28
Navigating Through Nodes .. 28

XML DOM OPERATIONS ... 29

10. XML DOM — Get Node ... 30
Get Node Value ... 31
Get Attribute Value ... 31

11. XML DOM — Set Node .. 33
Change value of Text Node .. 33
Change Value of Attribute Node ... 35

XML DOM

 3

12. XML DOM — Create Node .. 37
Create new Element node ... 37
Create new Text node ... 38
Create new Comment node ... 40
Create New CDATA Section Node .. 42
Create new Attribute node .. 43

13. XML DOM − Add Node .. 46
appendChild() .. 46
insertBefore() .. 47
insertData() .. 49

14. XML DOM — Replace Node .. 52
replaceChild() .. 52
replaceData() ... 54

15. XML DOM — Remove Node .. 57
removeChild() .. 57
removeAttribute() ... 60

16. XML DOM — Clone Node .. 62
cloneNode() ... 62

XML DOM OBJECTS .. 64

17. XML DOM — Node Object .. 65
Attributes... 65
baseURI .. 66
childNodes ... 68
firstChild .. 70
lastChild ... 72
localName .. 74
nextSibling ... 76
nodeName ... 78
nodeType ... 80
nodeValue ... 82
ownerDocument .. 84
parentNode ... 86
previousSibling .. 88
textContent ... 90
Node Types .. 92
Methods .. 92
appendChild .. 95
cloneNode ... 97
compareDocumentPosition ... 99
hasChildNodes ... 102
insertBefore ... 104
isDefaultNamespace .. 106
isEqualNode ... 108
lookupNamespaceURI ... 110
lookupPrefix .. 112

XML DOM

 4

normalize ... 114
removeChild .. 117
replaceChild ... 119

18. XML DOM — NodeList Object ... 122
Attributes... 122
Object Attribute - length ... 122
Methods .. 124
Object Method — item.. 124

19. XML DOM — NamedNodeMap Object .. 126
Attributes... 126
NamedNodeMap Object Property- length .. 126
Methods .. 128
NamedNodeMap Object Method- getNamedItem ... 128
NamedNodeMap Object Method- getNamedItemNS ... 130
NamedNodeMap Object Method- item () ... 132
NamedNodeMap Object Method- removeNamedItem .. 134
NamedNodeMap Object Method- removeNamedItemNS .. 136
NamedNodeMap Object Method- setNamedItem.. 138
NamedNodeMap Object Method- setNamedItemNS ... 141

20. XML DOM — DOMImplementation Object ... 144
Methods .. 144
DOMImplementation Object Method- createdocument .. 144
DOMImplementation Object Method- createdocument .. 145
DOMImplementation Object Method- hasFeature ... 146

21. XML DOM — DocumentType Object ... 148
Attributes... 148
DocumentType Object Attribute - name ... 148
DocumentType Object Attribute - entities .. 150
DocumentType Object Attribute - notation .. 152
DocumentType Object Attribute - publicId ... 153
DocumentType Object Attribute - systemId.. 155

22. DOM — ProcessingInstruction Object ... 157
Attributes... 157
ProcessingInstruction Object Attribute- data .. 157
ProcessingInstruction Object Attribute- target ... 160

23. DOM — Entity Object .. 163
Attributes... 163
Entity Object Attribute- inputEncoding ... 163
Entity Object Attribute- notationName ... 165
Entity Object Attribute - publicId .. 167
Entity Object Attribute - systemId ... 169
Entity Object Attribute- xmlEncoding .. 170
Entity Object Attribute - xmlVersion ... 172

24. XML DOM — Entity Reference Object ... 175

XML DOM

 5

25. XML DOM — Notation Object ... 176
Attributes... 176
Notation Object Attribute - publicID ... 176
Notation Object Attribute - systemId .. 178

26. DOM — Element Object .. 180
Properties .. 180
Element Object Attribute - tagname ... 180
Methods .. 182
Element Object method - getAttribute ... 184
Element Object Method - getAttributeNS ... 185
Element Object method - getAttributeNode ... 187
Element Object Method - getAttributeNodeNS .. 190
Element Object Method - getElementByTagName ... 192
Element Object Method- getElementsByTagNameNS .. 194
Element Object Method- hasAttribute .. 196
Element Object Method- hasAttribute .. 198
Element Object Method - removeAttribute .. 200
Element Object Method- removeAttributeNS .. 202
Element Object method - removeAttributeNode ... 204
Element Object method - setAttribute .. 206
Element Object Method - setAttributeNS ... 209
Element Object method - setAttributeNode ... 211
Element Object Method - setAttributeNodeNS .. 213

27. XML DOM — Attribute Object .. 216
Attributes... 216
Attribute Object Attribute - name ... 216
Attribute Object Attribute - specified.. 218
Attribute Object Attribute - value ... 220
Attribute Object Attribute - ownerElement .. 222
Attribute Object Attribute - isId .. 225

28. XML DOM — CDATASection Object .. 227

29. XML DOM — Comment Object ... 228

30. XML DOM — XMLHttpRequest Object .. 229
Methods .. 229
Attributes... 230
Retrieve specific information of a resource file .. 232

31. XML DOM — DOMException Object ... 235
Properties .. 235
Error Types .. 235

XML DOM

 1

The Document Object Model (DOM) is a W3C standard. It defines a standard for accessing

documents like HTML and XML.

Definition of DOM as put by the W3C is:

The Document Object Model (DOM) is an application programming interface

(API) for HTML and XML documents. It defines the logical structure of

documents and the way a document is accessed and manipulated.

DOM defines the objects and properties and methods (interface) to access all XML

elements. It is separated into 3 different parts / levels:

 Core DOM - standard model for any structured document

 XML DOM - standard model for XML documents

 HTML DOM - standard model for HTML documents

XML DOM is a standard object model for XML. XML documents have a hierarchy of

informational units called nodes; DOM is a standard programming interface of describing

those nodes and the relationships between them.

As XML DOM also provides an API that allows a developer to add, edit, move or remove

nodes at any point on the tree in order to create an application.

Following is the diagram for the DOM structure. The diagram depicts that parser evaluates

an XML document as a DOM structure by traversing through each node.

Advantages of XML DOM

The following are the advantages of XML DOM.

 XML DOM is language and platform independent.

 XML DOM is traversable - Information in XML DOM is organized in a hierarchy

which allows developer to navigate around the hierarchy looking for specific

information.

1. XML DOM – Overview

XML DOM

 2

 XML DOM is modifiable - It is dynamic in nature providing the developer a scope

to add, edit, move or remove nodes at any point on the tree.

Disadvantages of XML DOM

 It consumes more memory (if the XML structure is large) as program written once

remains in memory all the time until and unless removed explicitly.

 Due to the extensive usage of memory, its operational speed compared to SAX is

slower.

XML DOM

 3

Now that we know what DOM means, let's see what a DOM structure is. A DOM document

is a collection of nodes or pieces of information, organized in a hierarchy. Some types

of nodes may have child nodes of various types and others are leaf nodes that cannot have

anything under them in the document structure. Following is a list of the node types, with

a list of node types that they may have as children:

 Document -- Element (maximum of one), ProcessingInstruction, Comment,

DocumentType (maximum of one)

 DocumentFragment -- Element, ProcessingInstruction, Comment, Text,

CDATASection, EntityReference

 EntityReference -- Element, ProcessingInstruction, Comment, Text,

CDATASection, EntityReference

 Element -- Element, Text, Comment, ProcessingInstruction, CDATASection,

EntityReference

 Attr -- Text, EntityReference

 ProcessingInstruction -- No children

 Comment -- No children

 Text -- No children

 CDATASection -- No children

 Entity -- Element, ProcessingInstruction, Comment, Text, CDATASection,

EntityReference

 Notation -- No children

Example

Consider the DOM representation of the following XML document node.xml.

<?xml version="1.0"?>

<Company>

 <Employee category="technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 </Employee>

 <Employee category="non-technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

2. XML DOM — Model

XML DOM

 4

 <ContactNo>1234667898</ContactNo>

 </Employee>

</Company>

The Document Object Model of the above XML document would be as follows:

From the above flowchart, we can infer:

 Node object can have only one parent node object. This occupies the position

above all the nodes. Here it is Company.

 The parent node can have multiple nodes called the child nodes. These child nodes

can have additional nodes called the attribute nodes. In the above example, we

have two attribute nodes — Technical and Non-technical. The attribute node is not

actually a child of the element node, but is still associated with it.

 These child nodes in turn can have multiple child nodes. The text within the nodes

is called the text node.

 The node objects at the same level are called as siblings.

 The DOM identifies:

o the objects to represent the interface and manipulate the document.

o the relationship among the objects and interfaces.

XML DOM

 5

In this chapter we will study about the XML DOM Nodes. Every XML DOM contains the

information in hierarchical units called Nodes and the DOM describes these nodes and the

relationship between them.

Node Types

The following flowchart shows all the node types:

The most common types of nodes in XML are:

 Document Node: Complete XML document structure is a document node.

 Element Node: Every XML element is an element node. This is also the only type

of node that can have attributes.

 Attribute Node: Each attribute is considered an attribute node. It contains

information about an element node, but is not actually considered to be children of

the element.

 Text Node: The document texts are considered as text node. It can consist of more

information or just white space.

3. XML DOM — Nodes

XML DOM

 6

Some less common types of nodes are:

 CData Node: This node contains information that should not be analyzed by the

parser. Instead, it should just be passed on as plain text.

 Comment Node: This node includes information about the data, and is usually

ignored by the application.

 Processing Instructions Node: This node contains information specifically aimed

at the application.

 Document Fragments Node

 Entities Node

 Entity reference nodes

 Notations Node

XML DOM

 7

In this chapter, we will study about the XML DOM Node Tree. In an XML document, the

information is maintained in hierarchical structure; this hierarchical structure is referred

to as the Node Tree. This hierarchy allows a developer to navigate around the tree looking

for specific information, thus nodes are allowed to access. The content of these nodes can

then be updated.

The structure of the node tree begins with the root element and spreads out to the child

elements till the lowest level.

Example

Following example demonstrates a simple XML document, whose node tree is structure is

shown in the diagram below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 </Employee>

</Company>

4. XML DOM — Node Tree

XML DOM

 8

As can be seen in the above example whose pictorial representation (of its DOM) is as

shown below:

 The topmost node of a tree is called the root. The root node is <Company> which

in turn contains the two nodes of <Employee>. These nodes are referred to as child

nodes.

 The child node <Employee> of root node <Company>, in turn consists of its own

child node (<FirstName>, <LastName>, <ContactNo>).

 The two child nodes, <Employee> have attribute values Technical and Non-

Technical, are referred as attribute nodes.

 The text within every node is called the text node.

XML DOM

 9

DOM as an API contains interfaces that represent different types of information that can

be found in an XML document, such as elements and text. These interfaces include the

methods and properties necessary to work with these objects. Properties define the

characteristic of the node whereas methods give the way to manipulate the nodes.

Following table lists the DOM classes and interfaces:

Interface Description

DOMImplementation

It provides a number of methods for performing operations

that are independent of any particular instance of the

document object model.

DocumentFragment

It is the "lightweight" or "minimal" document object, and it (as

the superclass of Document) anchors the XML/HTML tree in a

full-fledged document.

Document

It represents the XML document's top-level node, which

provides access to all the nodes in the document, including the

root element.

Node It represents XML node.

NodeList It represents a read-only list of Node objects.

NamedNodeMap
It represents collections of nodes that can be accessed by

name.

Data
It extends Node with a set of attributes and methods for

accessing character data in the DOM.

Attribute It represents an attribute in an Element object.

Element It represents the element node. Derives from Node.

Text It represents the text node. Derives from CharacterData.

Comment It represents the comment node. Derives from CharacterData.

ProcessingInstruction

It represents a "processing instruction". It is used in XML as a

way to keep processor-specific information in the text of the

document.

CDATA Section It represents the CDATA Section. Derives from Text.

5. XML DOM − Methods

XML DOM

 10

Entity It represents an entity. Derives from Node.

EntityReference
This represent an entity reference in the tree. Derives from

Node.

[

We will be discussing methods and properties of each of the above Interfaces in their

respective chapters.

XML DOM

 11

In this chapter, we will study about XML Loading and Parsing.

In order to describe the interfaces provided by the API, the W3C uses an abstract language

called the Interface Definition Language (IDL). The advantage of using IDL is that the

developer learns how to use the DOM with his or her favorite language and can switch

easily to a different language.

The disadvantage is that, since it is abstract, the IDL cannot be used directly by Web

developers. Due to the differences between programming languages, they need to have

mapping — or binding — between the abstract interfaces and their concrete languages.

DOM has been mapped to programming languages such as Javascript, JScript, Java, C,

C++, PLSQL, Python, and Perl.

In the following sections and chapters, we will be using Javascript as our programming

language to load XML file.

Parser

A parser is a software application that is designed to analyze a document, in our case XML

document and do something specific with the information. Some of the DOM based parsers

are listed in the following table:

Parser Description

JAXP Sun Microsystem’s Java API for XML Parsing (JAXP)

XML4J IBM’s XML Parser for Java (XML4J)

msxml
Microsoft’s XML parser (msxml) version 2.0 is built-into Internet Explorer

5.5

4DOM 4DOM is a parser for the Python programming language

XML::DOM XML::DOM is a Perl module to manipulate XML documents using Perl

Xerces Apache’s Xerces Java Parser

In a tree-based API like DOM, the parser traverses the XML file and creates the

corresponding DOM objects. Then you can traverse the DOM structure back and forth.

6. XML DOM — Loading

XML DOM

 12

Loading and Parsing XML

While loading an XML document, the XML content can come in two forms:

 Directly as XML file

 As XML string

Content as XML file

Following example demonstrates how to load XML (node.xml) data using Ajax and

Javascript when the XML content is received as an XML file. Here, the Ajax function gets

the content of an xml file and stores it in XML DOM. Once the DOM object is created, it is

then parsed.

<!DOCTYPE html>

<html>

 <body>

 <div>

 FirstName:

 LastName:

 ContactNo:

 Email:

 </div>

 <script>

 //if browser supports XMLHttpRequest

 if (window.XMLHttpRequest)

 {// Create an instance of XMLHttpRequest object. code for IE7+,
Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 // sets and sends the request for calling "node.xml"

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 // sets and returns the content as XML DOM

 xmlDoc=xmlhttp.responseXML;

 //parsing the DOM object

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 13

 document.getElementById("FirstName").innerHTML=

 xmlDoc.getElementsByTagName("FirstName")[0].childNodes[0].nodeValue;

 document.getElementById("LastName").innerHTML=

 xmlDoc.getElementsByTagName("LastName")[0].childNodes[0].nodeValue;

 document.getElementById("ContactNo").innerHTML=

 xmlDoc.getElementsByTagName("ContactNo")[0].childNodes[0].nodeValue;

 document.getElementById("Email").innerHTML=

 xmlDoc.getElementsByTagName("Email")[0].childNodes[0].nodeValue;

 </script>

 </body>

</html>

node.xml

<Company>

<Employee category="Technical" id="firstelement">

<FirstName>Tanmay</FirstName>

<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

<Email>tanmaypatil@xyz.com</Email>

</Employee>

<Employee category="Non-Technical">

<FirstName>Taniya</FirstName>

<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

<Email>taniyamishra@xyz.com</Email>

</Employee>

<Employee category="Management">

<FirstName>Tanisha</FirstName>

<LastName>Sharma</LastName>

<ContactNo>1234562350</ContactNo>

<Email>tanishasharma@xyz.com</Email>

</Employee>

</Company>

XML DOM

 14

Most of the details of the code are in the script code.

 Internet Explorer uses the ActiveXObject("Microsoft.XMLHTTP") to create an

instance of XMLHttpRequest object, other browsers use the

XMLHttpRequest() method.

 The responseXML transforms the XML content directly in XML DOM.

 Once the XML content is transformed into JavaScript XML DOM, you can access any

XML element by using the JS DOM methods and properties. We have used the DOM

properties such as childNodes, nodeValue and DOM methods such as

getElementsById(ID), getElementsByTagName(tags_name).

Execution

Save this file as loadingexample.html and open it in your browser. You will receive the

following output:

Content as XML string

Following example demonstrates how to load XML data using Ajax and Javascript when

XML content is received as XML file. Here, the Ajax function gets the content of an xml file

and stores it in XML DOM. Once the DOM object is created, it is then parsed.

<!DOCTYPE html>

<html>

 <head>

 <script>

 // loads the xml string in a dom object

 function loadXMLString(t)

 {

 // for non IE browsers

 if (window.DOMParser)

 {

 // create an instance for xml dom object

 parser=new DOMParser();

 xmlDoc=parser.parseFromString(t,"text/xml");

 }

XML DOM

 15

 // code for IE

 else

 {

 // create an instance for xml dom object

 xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

 xmlDoc.async=false;

 xmlDoc.loadXML(t);

 }

 return xmlDoc;

 }

 </script>

 </head>

 <body>

 <script>

 // a variable with the string

 var text="<Employee>";

 text=text+"<FirstName>Tanmay</FirstName>";

 text=text+"<LastName>Patil</LastName>";

 text=text+"<ContactNo>1234567890</ContactNo>";

 text=text+"<Email>tanmaypatil@xyz.com</Email>";

 text=text+"</Employee>";

 // calls the loadXMLString() with "text" function and store the xml dom in
a variable

 var xmlDoc=loadXMLString(text);

 //parsing the DOM object

 y=xmlDoc.documentElement.childNodes;

 for (i=0;i<y.length;i++)

 {

 document.write(y[i].childNodes[0].nodeValue);

 document.write("
");

 }

 </script>

 </body>

</html>

Most of the details of the code are in the script code.

XML DOM

 16

 Internet Explorer uses the ActiveXObject("Microsoft.XMLDOM") to load XML data

into a DOM object, other browsers use the DOMParser() function

and parseFromString(text, 'text/xml') method.

 The variable text shall contain a string with XML content.

 Once the XML content is transformed into JavaScript XML DOM, you can access any

XML element by using JS DOM methods and properties. We have used DOM

properties such as childNodes, nodeValue.

Execution

Save this file as loadingexample.html and open it in your browser. You will see the

following output:

Now that we saw how the XML content transforms into JavaScript XML DOM, you can now

access any XML element by using the XML DOM methods.

XML DOM

 17

In this chapter, we will discuss XML DOM Traversing. We studied in the previous

chapter how to load XML document and parse the thus obtained DOM object. This parsed

DOM object can be traversed. Traversing is a process in which looping is done in a

systematic manner by going across each and every element step by step in a node tree.

Example

The following example (traverse_example.htm) demonstrates DOM traversing. Here we

traverse through each child node of <Employee> element.

<!DOCTYPE html>

<html>

<style>

table,th,td

{

border:1px solid black;

border-collapse:collapse

}

</style>

 <body>

 <div id="ajax_xml">

 </div>

 <script>

 //if browser supports XMLHttpRequest

 if (window.XMLHttpRequest)

 {// Create an instance of XMLHttpRequest object. code for IE7+,
Firefox, Chrome, Opera, Safari

 var xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 var xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 // sets and sends the request for calling "node.xml"

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

7. XML DOM — Traversing

XML DOM

 18

 // sets and returns the content as XML DOM

 var xml_dom=xmlhttp.responseXML;

 // this variable stores the code of the html table

 var html_tab = '<table id="id_tabel" align="center"><tr><th>Employee
Category</th><th>FirstName</th><th>LastName</th><th>ContactNo</th><th>Email</th
></tr>';

 var arr_employees = xml_dom.getElementsByTagName("Employee");

 // traverses the "arr_employees" array

 for(var i=0; i<arr_employees.length; i++) {

 var employee_cat = arr_employees[i].getAttribute('category');

// gets the value of 'category' element of current "Element" tag

 // gets the value of first child-node of 'FirstName' element of current
"Employee" tag

 var employee_firstName =
arr_employees[i].getElementsByTagName('FirstName')[0].childNodes[0].nodeValue;

 // gets the value of first child-node of 'LastName' element of current
"Employee" tag

 var employee_lastName =
arr_employees[i].getElementsByTagName('LastName')[0].childNodes[0].nodeValue;

 // gets the value of first child-node of 'ContactNo' element of current
"Employee" tag

 var employee_contactno =
arr_employees[i].getElementsByTagName('ContactNo')[0].childNodes[0].nodeValue;

 // gets the value of first child-node of 'Email' element of current
"Employee" tag

 var employee_email =
arr_employees[i].getElementsByTagName('Email')[0].childNodes[0].nodeValue;

 // adds the values in the html table

 html_tab += '<tr><td>'+ employee_cat+ '</td><td>'+ employee_firstName+
'</td><td>'+ employee_lastName+ '</td><td>'+ employee_contactno+ '</td><td>'+
employee_email+ '</td></tr>';

 }

 html_tab += '</table>';

 // adds the html table in a html tag, with id="ajax_xml"

 document.getElementById('ajax_xml').innerHTML = html_tab;

 </script>

XML DOM

 19

 </body>

</html>

 This code loads node.xml.

 The XML content is transformed into JavaScript XML DOM object.

 The array of elements (with tag Element) using the method

getElementsByTagName() is obtained.

 Next, we traverse through this array and display the child node values in a table.

Execution

Save this file as traverse_example.html on the server path (this file and node.xml should

be on the same path in your server). You will receive the following output:

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 20

Until now we studied DOM structure, how to load and parse XML DOM object and traverse

through the DOM objects. Here we will see how we can navigate between nodes in a DOM

object. The XML DOM consist of various properties of the nodes which help us navigate

through the nodes, such as:

 parentNode

 childNodes

 firstChild

 lastChild

 nextSibling

 previousSibling

Following is a diagram of a node tree showing its relationship with the other nodes.

8. XML DOM — Navigation

XML DOM

 21

DOM − Parent Node

This property specifies the parent node as a node object.

Example

The following example (navigate_example.htm) parses an XML document (node.xml) into

an XML DOM object. Then the DOM object is navigated to the parent node through the

child node:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 var y=xmlDoc.getElementsByTagName("Employee")[0];

 document.write(y.parentNode.nodeName);

 </script>

 </body>

</html>

As you can see in the above example, the child node Employee navigates to its parent

node.

Execution

Save this file as navigate_example.html on the server path (this file and node.xml should

be on the same path in your server). In the output, we get the parent node

of Employee, i.e., Company.

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 22

First Child

This property is of type Node and represents the first child name present in the NodeList.

Example

The following example (first_node_example.htm) parses an XML document (node.xml)

into an XML DOM object, then navigates to the first child node present in the DOM object.

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 function get_firstChild(p)

 {

 a=p.firstChild;

 while (a.nodeType!=1)

 {

 a=a.nextSibling;

 }

 return a;

 }

 var firstchild =
get_firstChild(xmlDoc.getElementsByTagName("Employee")[0]);

 document.write(firstchild.nodeName);

 </script>

 </body>

</html>

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 23

 Function get_firstChild(p) is used to avoid the empty nodes. It helps to get the

firstChild element from the node list.

 x=get_firstChild(xmlDoc.getElementsByTagName("Employee")[0]) fetche

s the first child node for the tag name Employee.

Execution

Save this file as first_node_example.htm on the server path (this file and node.xml should

be on the same path in your server). In the output, we get the first child node

of Employee i.e. FirstName.

Last Child

This property is of type Node and represents the last child name present in the NodeList.

Example

The following example (last_node_example.htm) parses an XML document (node.xml) into

an XML DOM object, then navigates to the last child node present in the xml DOM object.

<!DOCTYPE html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 function get_lastChild(p)

 {

 a=p.lastChild;

 while (a.nodeType!=1)

 {

 a=a.previousSibling;

 }

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

XML DOM

 24

 return a;

 }

 var
lastchild=get_lastChild(xmlDoc.getElementsByTagName("Employee")[0]);

 document.write(lastchild.nodeName);

 </script>

 </body>

</html>

Execution

Save this file as last_node_example.htm on the server path (this file and node.xml should

be on the same path in your server). In the output, we get the last child node

of Employee, i.e., Email.

Next Sibling

This property is of type Node and represents the next child, i.e., the next sibling of the

specified child element present in the NodeList.

Example

The following example (nextSibling_example.htm) parses an XML document (node.xml)

into an XML DOM object which navigates immediately to the next node present in the xml

document.

<!DOCTYPE html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 function get_nextSibling(p)

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 25

 {

 a=p.nextSibling;

 while (a.nodeType!=1)

 {

 a=a.nextSibling;

 }

 return a;

 }

 var
nextsibling=get_nextSibling(xmlDoc.getElementsByTagName("FirstName")[0]);

 document.write(nextsibling.nodeName);

 </script>

 </body>

</html>

Execution

Save this file as nextSibling_example.htm on the server path (this file and node.xml

should be on the same path in your server). In the output, we get the next sibling node

of FirstName, i.e., LastName.

Previous Sibling

This property is of type Node and represents the previous child, i.e., the previous sibling

of the specified child element present in the NodeList.

Example

The following example (previoussibling_example.htm) parses an XML document

(node.xml) into an XML DOM object, then navigates the before node of the last child node

present in the xml document.

<!DOCTYPE html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 26

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 function get_previousSibling(p)

 {

 a=p.previousSibling;

 while (a.nodeType!=1)

 {

 a=a.previousSibling;

 }

 return a;

 }

prevsibling=get_previousSibling(xmlDoc.getElementsByTagName("Email")[0]);

 document.write(prevsibling.nodeName);

 </script>

 </body>

</html>

Execution

Save this file as previoussibling_example.htm on the server path (this file and node.xml

should be on the same path in your server). In the output, we get the previous sibling

node of Email, i.e., ContactNo.

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 27

In this chapter, we will study about how to access the XML DOM nodes which are

considered as the informational units of the XML document. The node structure of the XML

DOM allows the developer to navigate around the tree looking for specific information and

simultaneously access the information.

Accessing Nodes

Following are the three ways in which you can access the nodes:

 By using the getElementsByTagName () method

 By looping through or traversing through nodes tree

 By navigating the node tree, using the node relationships

getElementsByTagName ()

This method allows accessing the information of a node by specifying the node name. It

also allows accessing the information of the Node List and Node List Length.

Syntax

The getElementByTagName() method has the following syntax:

node.getElementByTagName("tagname");

Where,

 node: is the document node.

 tagname: holds the name of the node whose value you want to get.

Example

Following is a simple program which illustrates the usage of method

getElementByTagName.

<!DOCTYPE html>

<html>

 <body>

 <div>

 FirstName:

 LastName:

 Category:

9. XML DOM — Accessing

XML DOM

 28

 </div>

 <script>

 if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 document.getElementById("FirstName").innerHTML=

 xmlDoc.getElementsByTagName("FirstName")[0].childNodes[0].nodeValue;

 document.getElementById("LastName").innerHTML=

 xmlDoc.getElementsByTagName("LastName")[0].childNodes[0].nodeValue;

 document.getElementById("Employee").innerHTML=

 xmlDoc.getElementsByTagName("Employee")[0].attributes[0].nodeValue;

 </script>

 </body>

</html>

 In the above example, we are accessing the information of the nodes

FirstName, LastName and Employee.

 xmlDoc.getElementsByTagName("FirstName")[0].childNodes[0].nodeValue; This

line accesses the value for the child node FirstName using the

getElementByTagName() method.

 xmlDoc.getElementsByTagName("Employee")[0].attributes[0].nodeValue; This

line accesses the attribute value of the node Employee getElementByTagName()

method.

Traversing through Nodes

This is covered in the chapter DOM Traversing with examples.

Navigating Through Nodes

This is covered in the chapter DOM Navigation with examples.

XML DOM

 29

XML DOM Operations

XML DOM

 30

In this chapter, we will study about how to get the node value of a XML DOM object. XML

documents have a hierarchy of informational units called nodes. Node object has a

property nodeValue, which returns the value of the element.

In the following sections, we will discuss:

 Getting node value of an element

 Getting attribute value of a node

The node.xml used in all the following examples is as below:

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

10. XML DOM — Get Node

XML DOM

 31

Get Node Value

The method getElementsByTagName() returns a NodeList of all the Elements in document

order with a given tag name.

Example

The following example (getnode_example.htm) parses an XML document (node.xml) into

an XML DOM object and extracts the node value of the child node Firstname (index at 0):

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 x = xmlDoc.getElementsByTagName('FirstName')[0]

 y = x.childNodes[0];

 document.write(y.nodeValue);

 </script>

 </body>

</html>

Execution

Save this file as getnode_example.htm on the server path (this file and node.xml should

be on the same path in your server). In the output, we get the node value as Tanmay.

Get Attribute Value

Attributes are part of the XML node elements. A node element can have multiple unique

attributes. Attribute gives more information about XML node elements. To be more precise,

they define properties of the node elements. An XML attribute is always a name-value

pair. This value of the attribute is called the attribute node.

XML DOM

 32

The getAttribute() method retrieves an attribute value by element name.

Example

The following example (get_attribute_example.htm) parses an XML document (node.xml)

into an XML DOM object and extracts the attribute value of the category Employee (index

at 2):

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 x = xmlDoc.getElementsByTagName('Employee')[2];

 document.write(x.getAttribute('category'));

 </script>

 </body>

</html>

Execution

Save this file as get_attribute_example.htm on the server path (this file and node.xml

should be on the same path in your server). In the output, we get the attribute value as

Management.

XML DOM

 33

In this chapter, we will study about how to change the values of nodes in an XML DOM

object. Node value can be changed as follows:

var value = node.nodeValue;

If node is an Attribute then the value variable will be the value of the attribute; if node is

a Text node it will be the text content; if node is an Element it will be null.

Following sections will demonstrate the node value setting for each node type (attribute,

text node and element).

The node.xml used in all the following examples is as below:

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Change value of Text Node

When we say the change value of Node element we mean to edit the text content of an

element (which is also called the text node). Following example demonstrates how to

change the text node of an element.

11. XML DOM — Set Node

XML DOM

 34

Example

The following example (set_text_node_example.htm) parses an XML document

(node.xml) into an XML DOM object and change the value of an element's text node. In

this case, Email of each Employee to support@xyz.com and print the values.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName("Email");

 for(i =0 ;i<x.length;i++){

 x[i].childNodes[0].nodeValue = "support@xyz.com";

 document.write(i+') ');

 document.write(x[i].childNodes[0].nodeValue);

 document.write('
');

 }

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 35

 </script>

 </body>

</html>

Execution

Save this file as set_text_node_example.htm on the server path (this file and node.xml

should be on the same path in your server). You will receive the following output:

0) support@xyz.com

1) support@xyz.com

2) support@xyz.com

Change Value of Attribute Node

The following example demonstrates how to change the attribute node of an element.

Example

The following example (set_attribute_example.htm) parses an XML document (node.xml)

into an XML DOM object and changes the value of an element's attribute node. In this

case, the Category of each Employee to admin-0, admin-1, admin-2 respectively and

print the values.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

XML DOM

 36

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName("Employee");

 for(i = 0 ;i<x.length;i++){

 newcategory = x[i].getAttributeNode('category');

 newcategory.nodeValue = "admin-"+i;

 document.write(i+') ');

 document.write(x[i].getAttributeNode('category').nodeValue);

 document.write('
');

 }

 </script>

 </body>

</html>

Execution

Save this file as set_node_attribute_example.htm on the server path (this file and

node.xml should be on the same path in your server). The result would be as below:

0) admin-0

1) admin-1

2) admin-2

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 37

In this chapter, we will discuss how to create new nodes using a couple of methods of the

document object. These methods provide a scope to create new element node, text node,

comment node, CDATA section node and attribute node. If the newly created node already

exists in the element object, it is replaced by the new one. Following sections demonstrate

this with examples.

Create new Element node

The method createElement() creates a new element node. If the newly created element

node exists in the element object, it is replaced by the new one.

Syntax

Syntax to use the createElement() method is as follows:

var_name = xmldoc.createElement("tagname");

Where,

 var_name: is the user-defined variable name which holds the name of new

element.

 ("tagname"): is the name of new element node to be created.

Example

The following example (createnewelement_example.htm) parses an XML document

(node.xml) into an XML DOM object and creates a new element node PhoneNo in the XML

document.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

12. XML DOM — Create Node

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 38

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 new_element = xmlDoc.createElement("PhoneNo");

 x = xmlDoc.getElementsByTagName("FirstName")[0];

 x.appendChild(new_element);

 document.write(x.getElementsByTagName("PhoneNo")[0].nodeName);

 </script>

 </body>

</html>

 new_element = xmlDoc.createElement("PhoneNo"); creates the new element node

<PhoneNo>

 x.appendChild(new_element); x holds the name of the specified child node

<FirstName> to which the new element node is appended.

Execution

Save this file as createnewelement_example.htm on the server path (this file and

node.xml should be on the same path in your server). In the output, we get the attribute

value as PhoneNo.

Create new Text node

The method createTextNode() creates a new text node.

Syntax

Syntax to use createTextNode() is as follows:

var_name=xmldoc.createTextNode("tagname");

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 39

Where,

 var_name: it is the user-defined variable name which holds the name of the new

text node.

 ("tagname"): within the parenthesis is the name of new text node to be created.

Example

The following example (createtextnode_example.htm) parses an XML document

(node.xml) into an XML DOM object and creates a new text node Im new text node in the

XML document.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 create_e = xmlDoc.createElement("PhoneNo");

 create_t = xmlDoc.createTextNode("Im new text node");

 create_e.appendChild(create_t);

 x = xmlDoc.getElementsByTagName("Employee")[0];

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 40

 x.appendChild(create_e);

 document.write(" PhoneNO: ");

document.write(x.getElementsByTagName("PhoneNo")[0].childNodes[0].nodeValue);

 </script>

 </body>

</html>

Details of the above code are as below:

 create_e = xmlDoc.createElement("PhoneNo"); creates a new element

<PhoneNo>.

 create_t = xmlDoc.createTextNode("Im new text node"); creates a new text

node "Im new text node".

 x.appendChild(create_e); the text node, "Im new text node" is appended to the

element, <PhoneNo>.

 document.write(x.getElementsByTagName("PhoneNo")[0].childNodes[0].nodeVal

ue); writes the new text node value to the element <PhoneNo>.

Execution

Save this file as createtextnode_example.htm on the server path (this file and node.xml

should be on the same path in your server). In the output, we get the attribute value as

i.e. PhoneNO: Im new text node.

Create new Comment node

The method createComment() creates a new comment node. Comment node is included

in the program for the easy understanding of the code functionality.

Syntax

Syntax to use createComment() is as follows:

var_name = xmldoc.createComment("tagname");

Where:

 var_name: is the user-defined variable name which holds the name of new

comment node.

 ("tagname"): is the name of the new comment node to be created.

Example

The following example (createcommentnode_example.htm) parses an XML document

(node.xml) into an XML DOM object and creates a new comment node, "Company is the

parent node" in the XML document.

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 41

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 create_comment = xmlDoc.createComment("Company is the parent node");

 x = xmlDoc.getElementsByTagName("Company")[0];

 x.appendChild(create_comment);

 document.write(x.lastChild.nodeValue);

 </script>

 </body>

</html>

In the above example:

 create_comment=xmlDoc.createComment("Company is the parent node")

— creates a specified comment line.

XML DOM

 42

 x.appendChild(create_comment) — In this line, ‘x’ holds the name of the element

<Company> to which the comment line is appended.

Execution

Save this file as createcommentnode_example.htm on the server path (this file and the

node.xml should be on the same path in your server). In the output, we get the attribute

value as Company is the parent node .

Create New CDATA Section Node

The method createCDATASection() creates a new CDATA section node. If the newly

created CDATA section node exists in the element object, it is replaced by the new one.

Syntax

Syntax to use createCDATASection() is as follows:

var_name = xmldoc.createCDATASection("tagname");

Where,

 var_name: is the user-defined variable name which holds the name of the new

CDATA section node.

 ("tagname"): is the name of new CDATA section node to be created.

Example

The following example (createcdatanode_example.htm) parses an XML document

(node.xml) into an XML DOM object and creates a new CDATA section node, "Create

CDATA Example" in the XML document.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

XML DOM

 43

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 create_CDATA = xmlDoc.createCDATASection("Create CDATA Example");

 x = xmlDoc.getElementsByTagName("Employee")[0];

 x.appendChild(create_CDATA);

 document.write(x.lastChild.nodeValue);

 </script>

 </body>

</html>

In the above example:

 create_CDATA=xmlDoc.createCDATASection("Create CDATA Example") — creates

a new CDATA section node, "Create CDATA Example"

 x.appendChild(create_CDATA) — here, x holds the specified element <Employee>

indexed at 0 to which the CDATA node value is appended.

Execution

Save this file as createcdatanode_example.htm on the server path (this file and node.xml

should be on the same path in your server). In the output, we get the attribute value as

Create CDATA Example.

Create new Attribute node

To create a new attribute node, the method setAttributeNode() is used. If the newly

created attribute node exists in the element object, it is replaced by the new one.

Syntax

Syntax to use setAttributeNode() is as follows:

var_name = xmldoc.createAttribute("tagname");

Where,

 var_name: is the user-defined variable name which holds the name of new attribute

node.

XML DOM

 44

 ("tagname"): is the name of new attribute node to be created.

Example

The following example (createattributenode_example.htm) parses an XML document

(node.xml) into an XML DOM object and creates a new attribute node section in the XML

document.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 create_a = xmlDoc.createAttribute("section");

 create_a.nodeValue = "A";

 x = xmlDoc.getElementsByTagName("Employee");

 x[0].setAttributeNode(create_a);

 document.write("New Attribute: ");

 document.write(x[0].getAttribute("section"));

 </script>

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 45

 </body>

</html>

In the above example:

 create_a=xmlDoc.createAttribute("Category") — creates an attribute with the

name <section>.

 create_a.nodeValue="Management" — creates the value "A" for the attribute

<section>.

 x[0].setAttributeNode(create_a) — this attribute value is set to the node element

<Employee> indexed at 0.

XML DOM

 46

In this chapter, we will discuss the nodes to the existing element. It provides a means to:

 append new child nodes before or after the existing child nodes

 insert data within the text node

 add attribute node

Following methods can be used to add/append the nodes to an element in a DOM:

 appendChild()

 insertBefore()

 insertData()

appendChild()

The method appendChild() adds the new child node after the existing child node.

Syntax

Syntax of appendChild() method is as follows:

Node appendChild(Node newChild) throws DOMException

Where,

 newChild — Is the node to add.

 This method returns the Node added.

Example

The following example (appendchildnode_example.htm) parses an XML document

(node.xml) into an XML DOM object and appends new child PhoneNo to the element

<FirstName>.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

13. XML DOM − Add Node

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 47

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 create_e = xmlDoc.createElement("PhoneNo");

 x = xmlDoc.getElementsByTagName("FirstName")[0];

 x.appendChild(create_e);

 document.write(x.getElementsByTagName("PhoneNo")[0].nodeName);

 </script>

 </body>

</html>

In the above example:

 using the method createElement(), a new element PhoneNo is created.

 The new element PhoneNo is added to the element FirstName using the method

appendChild().

Execution

Save this file as appendchildnode_example.htm on the server path (this file and node.xml

should be on the same path in your server). In the output, we get the attribute value as

PhoneNo.

insertBefore()

The method insertBefore(), inserts the new child nodes before the specified child nodes.

Syntax

Syntax of insertBefore() method is as follows:

Node insertBefore(Node newChild, Node refChild) throws DOMException

XML DOM

 48

Where,

 newChild — Is the node to insert

 refChild — Is the reference node, i.e., the node before which the new node must

be inserted.

 This method returns the Node being inserted.

Example

The following example (insertnodebefore_example.htm) parses an XML document

("node.xml") into an XML DOM object and inserts new child Email before the specified

element <Email>.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 create_e = xmlDoc.createElement("Email");

 x = xmlDoc.documentElement;

 y = xmlDoc.getElementsByTagName("Email");

XML DOM

 49

 document.write("No of Email elements before inserting was: " +
y.length);

 document.write("
");

 x.insertBefore(create_e,y[3]);

 y=xmlDoc.getElementsByTagName("Email");

 document.write("No of Email elements after inserting is: " +
y.length);

 </script>

 </body>

</html>

In the above example:

 using the method createElement(), a new element Email is created.

 The new element Email is added before the element Email using the method

insertBefore().

 y.length gives the total number of elements added before and after the new

element.

Execution

Save this file as insertnodebefore_example.htm on the server path (this file and node.xml

should be on the same path in your server). We will receive the following output:

No of Email elements before inserting was: 3

No of Email elements after inserting is: 4

insertData()

The method insertData(), inserts a string at the specified 16-bit unit offset.

Syntax

The insertData() has the following syntax:

void insertData(int offset, java.lang.String arg) throws DOMException

Where:

 offset — is the character offset at which to insert.

 arg — is the key word to insert the data. It encloses the two parameters offset and

string within the parenthesis separated by comma.

XML DOM

 50

Example

The following example (addtext_example.htm) parses an XML document (node.xml) into

an XML DOM object and inserts new data MiddleName at the specified position to the

element <FirstName>.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName("FirstName")[0].childNodes[0];

 document.write(x.nodeValue);

 x.insertData(6,"MiddleName");

 document.write("
");

 document.write(x.nodeValue);

 </script>

 </body>

</html>

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 51

 x.insertData(6,"MiddleName"); — Here, x holds the name of the specified child

name, i.e., <FirstName>. We then insert to this text node, the

data"MiddleName" starting from position 6.

Execution

Save this file as addtext_example.htm on the server path (this file and node.xml should

be on the same path in your server). We will receive the following in the output:

Tanmay

TanmayMiddleName

XML DOM

 52

In this chapter we will study about the replace node operation in an XML DOM object. As

we know everything in the DOM is maintained in a hierarchical informational unit known

as node and the replacing node provides another way to update these specified nodes or

a text node.

Following are the two methods to replace the nodes.

 replaceChild()

 replaceData()

replaceChild()

The method replaceChild() replaces the specified node with the new node.

Syntax

The insertData() has the following syntax:

Node replaceChild(Node newChild, Node oldChild) throws DOMException

Where,

 newChild — is the new node to put in the child list.

 oldChild — is the node being replaced in the list.

 This method returns the node replaced.

Example

The following example (replacenode_example.htm) parses an XML document (node.xml)

into an XML DOM object and replaces the specified node <FirstName> with the new node

<Name>.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

14. XML DOM — Replace Node

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 53

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc=loadXMLDoc("/dom/node.xml");

 x = xmlDoc.documentElement;

 z=xmlDoc.getElementsByTagName("FirstName");

 document.write("Content of FirstName element before replace
operation
");

 for (i=0;i<z.length;i++)

 {

 document.write(z[i].childNodes[0].nodeValue);

 document.write("
");

 }

 //create a Employee element, FirstName element and a text node

 newNode = xmlDoc.createElement("Employee");

 newTitle = xmlDoc.createElement("Name");

 newText = xmlDoc.createTextNode("MS Dhoni");

 //add the text node to the title node,

 newTitle.appendChild(newText);

 //add the title node to the book node

 newNode.appendChild(newTitle);

 y = xmlDoc.getElementsByTagName("Employee")[0]

 //replace the first book node with the new node

 x.replaceChild(newNode,y);

 z = xmlDoc.getElementsByTagName("FirstName");

XML DOM

 54

 document.write("Content of FirstName element after replace
operation
");

 for (i = 0;i<z.length;i++)

 {

 document.write(z[i].childNodes[0].nodeValue);

 document.write("
");

 }

 </script>

 </body>

</html>

Execution

Save this file as replacenode_example.htm on the server path (this file and node.xml

should be on the same path in your server).

We will get the output as shown below:

Content of FirstName element before replace operation

Tanmay

Taniya

Tanisha

Content of FirstName element after replace operation

Taniya

Tanisha

replaceData()

The method replaceData() replaces the characters starting at the specified 16-bit unit

offset with the specified string.

Syntax

The replaceData() has the following syntax:

void replaceData(int offset, int count, java.lang.String arg) throws
DOMException

Where,

 offset — is the offset from which to start replacing.

 count — is the number of 16-bit units to replace. If the sum of offset and count

exceeds length, then all the 16-bit units to the end of the data are replaced.

 arg — the DOMString with which the range must be replaced.

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 55

Example

The following example (replacedata_example.htm) parses an XML document (node.xml)

into an XML DOM object and replaces it.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName("ContactNo")[0].childNodes[0];

 document.write("ContactNo before replace operation:
"+x.nodeValue);

 x.replaceData(1,5,"9999999");

 document.write("
");

 document.write("ContactNo after replace operation:
"+x.nodeValue);

 </script>

 </body>

</html>

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 56

In the above example:

x.replaceData(2,3,"999");: Here x holds the text of the specified element <ContactNo>

whose text is replaced by the new text"9999999", starting from the position 1 till the

length of 5.

Execution

Save this file as replacedata_example.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

ContactNo before replace operation: 1234567890

ContactNo after replace operation: 199999997890

XML DOM

 57

In this chapter, we will study about the XML DOM Remove Node operation. The remove

node operation removes the specified node from the document. This operation can be

implemented to remove the nodes like text node, element node or an attribute node.

Following are the methods that are used for remove node operation:

 removeChild()

 removeAttribute()

removeChild()

The method removeChild() removes the child node indicated by oldChild from the list of

children, and returns it. Removing a child node is equivalent to removing a text node.

Hence, removing a child node removes the text node associated with it.

Syntax

The syntax to use removeChild() is as follows:

Node removeChild(Node oldChild) throws DOMException

Where,

 oldChild — is the node being removed.

 This method returns the node removed.

Example — Remove Current Node

The following example (removecurrentnode_example.htm) parses an XML document

(node.xml) into an XML DOM object and removes the specified node <ContactNo> from

the parent node.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

15. XML DOM — Remove Node

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 58

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 document.write("Before remove operation, total ContactNo elements:
");

 document.write(xmlDoc.getElementsByTagName("ContactNo").length);

 document.write("
");

 x = xmlDoc.getElementsByTagName("ContactNo")[0];

 x.parentNode.removeChild(x);

 document.write("After remove operation, total ContactNo elements:
");

 document.write(xmlDoc.getElementsByTagName("ContactNo").length);

 </script>

 </body>

</html>

In the above example:

 x = xmlDoc.getElementsByTagName("ContactNo")[0] gets the element

<ContactNo> indexed at 0.

 x.parentNode.removeChild(x) — removes the element <ContactNo> indexed at 0

from the parent node.

Execution

Save this file as removecurrentnode_example.htm on the server path (this file and

node.xml should be on the same path in your server). We get the following result:

Before remove operation, total ContactNo elements: 3

After remove operation, total ContactNo elements: 2

XML DOM

 59

Example — Remove Text Node

The following example (removetextNode_example.htm) parses an XML document

("node.xml") into an XML DOM object and removes the specified child node <FirstName>.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName("FirstName")[0];

 document.write("Text node of child node before removal is: ");

 document.write(x.childNodes.length);

 document.write("
");

 y = x.childNodes[0];

 x.removeChild(y);

 document.write("Text node of child node after removal is: ");

 document.write(x.childNodes.length);

XML DOM

 60

 </script>

 </body>

</html>

In the above example:

 x=xmlDoc.getElementsByTagName("FirstName")[0] — gets the first element

<FirstName> to the x indexed at 0.

 y=x.childNodes[0] — in this line y holds the child node to be remove.

 x.removeChild(y) — removes the specified child node.

Execution

Save this file as removetextNode_example.htm on the server path (this file and node.xml

should be on the same path in your server). We get the following result:

Text node of child node before removal is: 1

Text node of child node after removal is: 0

removeAttribute()

The method removeAttribute() removes an attribute of an element by name.

Syntax

Syntax to use removeAttribute() is as follows:

void removeAttribute(java.lang.String name) throws DOMException

Where,

 name — is the name of the attribute to remove.

Example

The following example (removeelementattribute_example.htm) parses an XML document

("node.xml") into an XML DOM object and removes the specified attribute node.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

XML DOM

 61

 }

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc=loadXMLDoc("/dom/node.xml");

 x=xmlDoc.getElementsByTagName('Employee');

 document.write(x[1].getAttribute('category'));

 document.write("
");

 x[1].removeAttribute('category');

 document.write(x[1].getAttribute('category'));

 </script>

 </body>

</html>

In the above example:

 document.write(x[1].getAttribute('category')) — value of

attributecategory indexed at 1st position is invoked.

 x[1].removeAttribute('category'); removes the attribute value.

Execution

Save this file as removeelementattribute_example.htm on the server path (this file and

node.xml should be on the same path in your server). We get the following result:

Non-Technical

null

XML DOM

 62

In this chapter, we will discuss the Clone Node operation on XML DOM object. Clone node

operation is used to create a duplicate copy of the specified node. cloneNode() is used for

this operation.

cloneNode()

This method returns a duplicate of this node, i.e., serves as a generic copy constructor for

nodes. The duplicate node has no parent (parentNode is null) and no user data.

Syntax

The cloneNode() method has the following syntax:

Node cloneNode(boolean deep)

 deep - If true, recursively clones the subtree under the specified node; if false,

clone only the node itself (and its attributes, if it is an Element).

 This method returns the duplicate node.

Example

The following example (clonenode_example.htm) parses an XML document (node.xml)

into an XML DOM object and creates a deep copy of the first Employee element.

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

16. XML DOM — Clone Node

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 63

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee')[0];

 clone_node = x.cloneNode(true);

 xmlDoc.documentElement.appendChild(clone_node);

 firstname = xmlDoc.getElementsByTagName("FirstName");

 lastname = xmlDoc.getElementsByTagName("LastName");

 contact = xmlDoc.getElementsByTagName("ContactNo");

 email = xmlDoc.getElementsByTagName("Email");

 for (i = 0;i < firstname.length;i++)

 {

 document.write(firstname[i].childNodes[0].nodeValue+'
'+lastname[i].childNodes[0].nodeValue+',
'+contact[i].childNodes[0].nodeValue+', '+email[i].childNodes[0].nodeValue);

 document.write("
");

 }

 </script>

 </body>

</html>

As you can see in the above example, we have set the cloneNode() param to true. Hence

each of the child element under the Employee element is copied or cloned.
[

Execution

Save this file as clonenode_example.htm on the server path (this file and node.xml should

be on the same path in your server). We will get the output as shown below:

Tanmay Patil, 1234567890, tanmaypatil@xyz.com

Taniya Mishra, 1234667898, taniyamishra@xyz.com

Tanisha Sharma, 1234562350, tanishasharma@xyz.com

Tanmay Patil, 1234567890, tanmaypatil@xyz.com

You will notice that the first Employee element is cloned completely.

XML DOM

 64

XML DOM Objects

XML DOM

 65

Node interface is the primary datatype for the entire Document Object Model. The node is

used to represent a single XML element in the entire document tree.

A node can be any type that is an attribute node, a text node or any other node. The

attributes nodeName, nodeValue and attributes are included as a mechanism to get at

node information without casting down to the specific derived interface.

Attributes

The following table lists the attributes of the Node object:

Attribute Type Description

attributes NamedNodeMap

This is of type NamedNodeMap containing

the attributes of this node (if it is an

Element) or null otherwise. This has been

removed. Refer specs

baseURI DOMString
It is used to specify absolute base URI of the

node.

childNodes NodeList

It is a NodeList that contains all children of

this node. If there are no children, this is

a NodeList containing no nodes.

firstChild Node It specifies the first child of a node.

lastChild Node It specifies the last child of a node.

localName DOMString

It is used to specify the name of the local

part of a node. This has been removed.

Refer specs.

namespaceURI DOMString
It specifies the namespace URI of a

node. This has been removed. Refer specs

nextSibling Node

It returns the node immediately following

this node. If there is no such node, this

returns null.

17. XML DOM — Node Object

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node

XML DOM

 66

nodeName DOMString
The name of this node, depending on its

type.

nodeType unsigned short
It is a code representing the type of the

underlying object.

nodeValue DOMString
It is used to specify the value of a node

depending on their types.

ownerDocument Document
It specifies the Document object associated

with the node.

parentNode Node
This property specifies the parent node of a

node.

prefix DOMString

This property returns the namespace prefix

of a node. This has been removed.

Refer specs

previousSibling Node
This specifies the node immediately

preceding the current node.

textContent DOMString This specifies the textual content of a node.

baseURI

Attribute baseURI is used to specify the absolute base URI of the node.

Syntax

Following is the syntax for the usage of the baseURI attribute.

nodeObject.baseURI

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

https://dom.spec.whatwg.org/#interface-node

XML DOM

 67

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

[[

Following example demonstrates the usage of baseURI attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

XML DOM

 68

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee')[0];

 document.write("Base URI: "+x.baseURI);

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_baseuri.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Base URI: http://www.tutorialspoint.com/dom/node.xml

childNodes

Attribute childNodes is used to describe the child node from the NodeList for a node.

Syntax

Following is the syntax for the usage of the childNodes attribute.

nodeObject.childNodes

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

XML DOM

 69

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

[

Following example demonstrates the usage of childNodes attribute:

<!DOCTYPE html>

 <html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.childNodes;

XML DOM

 70

 for (i = 0;i < x.length;i ++)

 {

 document.write("Nodename: " + x[i].nodeName);

 document.write(" (nodetype: " + x[i].nodeType + ")
");

 }

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_childnodes.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Nodename: Company (nodetype: 1)

firstChild

Attribute firstChild specifies the first child of a node.

Syntax

Following is the syntax for the usage of the firstChild attribute.

nodeObject.firstChild

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

XML DOM

 71

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the firstChild attribute:

<!DOCTYPE html>

 <html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 function get_firstChild(p)

 {

 a = p.firstChild;

 while (a.nodeType!=1)

 {

 a = a.nextSibling;

 }

 return a;

 }

XML DOM

 72

 x = get_firstChild(xmlDoc.getElementsByTagName("Employee")[0]);

 document.write("First child is : ");

 document.write(x.nodeName);

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_firstchild.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

First child is : FirstName

lastChild

The attribute lastChild specifies the last child of a node.

Syntax

Following is the syntax for the usage of the lastChild attribute.

nodeObject.lastChild

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

XML DOM

 73

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of lastChild attribute:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 function get_lastChild(p)

 {

 a = p.lastChild;

 while (a.nodeType != 1)

 {

 a = a.previousSibling;

 }

 return a;

 }

XML DOM

 74

 x = get_lastChild(xmlDoc.getElementsByTagName("Employee")[0]);

 document.write("Last child is : ");

 document.write(x.nodeName);

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_lastChild.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Last child is : Email

localName

The attribute localName is used to specify the name of the local part of a node.

Syntax

Following is the syntax for the usage of the localName attribute.

nodeObject.localName

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

XML DOM

 75

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the localName attribute:

<!DOCTYPE html>

 <html>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('LastName');

 document.write("Local name: " + x.item(0).localName);

 </script>

 </body>

</html>

XML DOM

 76

Execution

Save this file as nodeattribute_localname.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Local name: LastName

nextSibling

Attribute nextSibling returns the node immediately following this node. If there is no such

node, this returns null.

Syntax

Following is the syntax for the usage of the nextSibling attribute.

nodeObject.nextSibling

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

XML DOM

 77

</Company>

Following example demonstrates the usage of the nextSibling attribute:

<!DOCTYPE html>

 <html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 function get_nextsibling(n1)

 {

 c1 = n1.nextSibling;

 while (c1.nodeType!=1)

 {

 c1 = c1.nextSibling;

 }

 return c1;

 }

 xmlDoc = loadXMLDoc("/dom/node.xml");

XML DOM

 78

 c1 = xmlDoc.getElementsByTagName("FirstName")[0];

 document.write(c1.nodeName);

 document.write(" and value = ");

 document.write(c1.childNodes[0].nodeValue);

 c2 = get_nextsibling(c1);

 document.write("Name of Next sibling is: ");

 document.write(c2.nodeName);

 document.write(" and value = ");

 document.write(c2.childNodes[0].nodeValue);

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_nextsibling.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

FirstName and value = Tanmay

Name of Next sibling is: LastName and value = Patil

nodeName

Attribute nodeName gives the name of the node, depending on its type.

Syntax

Following is the syntax for the usage of the nodeName attribute.

nodeObject.nodeName

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

XML DOM

 79

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the nodeName attribute:

<!DOCTYPE html>

 <html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

XML DOM

 80

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 document.write("Nodename: " + xmlDoc.nodeName);

 document.write(" (nodetype: " + xmlDoc.nodeType + ")
");

 x=xmlDoc.documentElement;

 document.write("Nodename: " + x.nodeName);

 document.write(" (nodetype: " + x.nodeType + ")
");

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_nodename.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Nodename: #document (nodetype: 9)

Nodename: Company (nodetype: 1)

nodeType

Attribute nodeType is a code representing the type of the underlying object.

Syntax

Following is the syntax for the usage of the nodeType attribute.

nodeObject.nodeType

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

XML DOM

 81

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of nodeType attribute:

<!DOCTYPE html>

 <html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

XML DOM

 82

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 document.write("Nodename: " + xmlDoc.nodeName);

 document.write(" (nodetype: " + xmlDoc.nodeType + ")
");

 x=xmlDoc.documentElement;

 document.write("Nodename: " + x.nodeName);

 document.write(" (nodetype: " + x.nodeType + ")
");

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_nodetype.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Nodename: #document (nodetype: 9)

Nodename: Company (nodetype: 1)

nodeValue

Attribute nodeValue is used to specify the value of a node depending on their types.

Syntax

Following is the syntax for the usage of the nodeValue attribute.

nodeObject.nodeValue

Example

node.xml contents are as below:

<?xml version="1.0"?>

XML DOM

 83

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of nodeValue attribute:

<!DOCTYPE html>

<html>

 <body>

 <div>

 FirstName:

 LastName:

 </div>

 <script>

 if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

XML DOM

 84

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 document.getElementById("FirstName").innerHTML=

 xmlDoc.getElementsByTagName("FirstName")[0].childNodes[0].nodeValue;

 document.getElementById("LastName").innerHTML=

 xmlDoc.getElementsByTagName("LastName")[0].childNodes[0].nodeValue;

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_nodevalue.htm on the server path (this file and node.xml

should be on the same path in your server).We will get the output as shown below:

FirstName: Tanmay

LastName: Patil

ownerDocument

Attribute ownerDocument specifies the Document object associated with the node.

Syntax

Following is the syntax for the usage of the ownerDocument attribute.

nodeObject.ownerDocument

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

XML DOM

 85

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the ownerDocument attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

XML DOM

 86

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName("Employee")[0].ownerDocument;

 document.write("Nodename: " + x.nodeName);

 document.write(" (nodetype: " + x.nodeType + ")");

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_ownerdocument.htm on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

Nodename: #document (nodetype: 9)

parentNode

Attribute parentNode specifies the parent node of a node.

Syntax

Following is the syntax for the usage of the parentNode attribute.

nodeObject.parentNode

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

XML DOM

 87

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the parentNode attribute:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 document.write("Parent node of Employee is: ");

 x = xmlDoc.getElementsByTagName("Employee")[0];

 document.write(x.parentNode.nodeName);

 </script>

 </body>

XML DOM

 88

</html>

Execution

Save this file as nodeattribute_parentnode.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Parent node is : Company

previousSibling

Attribute previousSibling specifies the node immediately preceding the current node.

Syntax

Following is the syntax for the usage of the previousSibling attribute.

nodeObject.previousSibling

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

XML DOM

 89

 </Employee>

</Company>

Following example demonstrates the usage of previousSibling attribute:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 function get_previousSibling(p)

 {

 a = p.previousSibling;

 while (a.nodeType != 1)

 {

 a = a.previousSibling;

 }

 return a;

 }

 x = get_previousSibling(xmlDoc.getElementsByTagName("Email")[0]);

 document.write("Previous sibling of Email is : ");

 document.write(x.nodeName);

 </script>

 </body>

</html>

XML DOM

 90

Execution

Save this file as nodeattribute_previoussibling.htm on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

Previous sibling of Email is : ContactNo

textContent

Attribute textContent specifies the textual content of a node.

Syntax

Following is the syntax for usage of the textContent attribute.

nodeObject.textContent

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

XML DOM

 91

</Company>

Following example demonstrates the usage of textContent attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Email');

 document.write("Text Content of Email node is : ");

 document.write(x.item(0).textContent);

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_textcontent.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

XML DOM

 92

Text Content of Email node is : tanmaypatil@xyz.com

Node Types

We have listed the node types as below:

 ELEMENT_NODE

 ATTRIBUTE_NODE

 ENTITY_NODE

 ENTITY_REFERENCE_NODE

 DOCUMENT_FRAGMENT_NODE

 TEXT_NODE

 CDATA_SECTION_NODE

 COMMENT_NODE

 PROCESSING_INSTRUCTION_NODE

 DOCUMENT_NODE

 DOCUMENT_TYPE_NODE

 NOTATION_NODE

Methods

Below table lists the different Node Object methods:

getUserData

Method Description

appendChild(Node newChild)

This method adds a node after the

last child node of the specified

element node. It returns the added

node.

cloneNode(boolean deep)

This method is used to create a

duplicate node, when overridden in a

derived class. It returns the

duplicated node.

XML DOM

 93

compareDocumentPosition(Node other)

This method is used to compare the

position of the current node against a

specified node according to the

document order. Returns unsigned

short, how the node is positioned

relatively to the reference node.

getFeature(DOMString feature, DOMString

version)

Returns the DOM Object which

implements the specialized APIs of

the specified feature and version, if

any, or null if there is no object. This

has been removed. Refer specs.

getUserData(DOMString key)

Retrieves the object associated to a

key on this node. The object must

first have been set to this node by

calling the setUserData with the

same key. Returns the

DOMUserData associated to the

given key on this node, or null if there

was none. This has been removed.

Refer specs.

hasAttributes()

Returns whether this node (if it is an

element) has any attributes or not.

Returns true if any attribute is

present in the specified node else

returns false. This has been

removed. Refer specs.

hasChildNodes()

Returns whether this node has any

children or not. This method

returns true if the current node has

child nodes otherwise false.

insertBefore(Node newChild, Node refChild)

This method is used to insert a new

node as a child of this node, directly

before an existing child of this node.

It returns the node being inserted.

isDefaultNamespace(DOMString

namespaceURI)

This method accepts a namespace

URI as an argument and returns

a Boolean with a value of true if the

namespace is the default namespace

on the given node or false if not.

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node

XML DOM

 94

isEqualNode(Node arg)

This method tests whether two nodes

are equal. Returns true if the nodes

are equal, false otherwise.

isSameNode(Node other)

This method returns whether current

node is the same node as the given

one. Returns true if the nodes are the

same, false otherwise. This has been

removed. Refer specs.

isSupported(DOMString feature,

DOMString version)

This method returns whether the

specified DOM module is supported

by the current node. Returns true if

the specified feature is supported on

this node, false otherwise. This has

been removed. Refer specs.

lookupNamespaceURI(DOMString prefix)

This method gets the URI of the

namespace associated with the

namespace prefix.

lookupPrefix(DOMString namespaceURI)

This method returns the closest prefix

defined in the current namespace for

the namespace URI. Returns an

associated namespace prefix if found

or null if none is found.

normalize()

Normalization adds all the text nodes

including attribute nodes which

define a normal form where structure

of the nodes which contain elements,

comments, processing instructions,

CDATA sections, and entity

references separates the text nodes,

i.e., neither adjacent Text nodes nor

empty Text nodes.

removeChild(Node oldChild)

This method is used to remove a

specified child node from the current

node. This returns the node removed.

replaceChild(Node newChild, Node oldChild)

This method is used to replace the old

child node with a new node. This

returns the node replaced.

https://dom.spec.whatwg.org/#interface-node
https://dom.spec.whatwg.org/#interface-node

XML DOM

 95

setUserData(DOMString key,

DOMUserData data, UserDataHandler

handler)

This method associates an object to a

key on this node. The object can later

be retrieved from this node by calling

the getUserData with the same key.

This returns

the DOMUserData previously

associated to the given key on this

node. This has been removed.

Refer specs.

appendChild

The Method appendChild adds a node after the last child node of the specified element

node. It returns the added node.

Syntax

Following is the syntax for the usage of the appendChild attribute.

nodeObject.appendChild(newChild)

Parameter Description

newChild It is the new node to be added/appended. It is of type Node.

This method returns the Node added.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

https://dom.spec.whatwg.org/#interface-node

XML DOM

 96

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of appendChild attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 create_e = xmlDoc.createElement("PhoneNo");

 x = xmlDoc.getElementsByTagName("FirstName")[0];

XML DOM

 97

 x.appendChild(create_e);

 document.write("Appended child is : ")

 document.write(x.getElementsByTagName("PhoneNo")[0].nodeName);

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_appendchild.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Appended child is : PhoneNo

cloneNode

Method cloneNode is used to create a duplicate node, when overridden in a derived class.

It returns the duplicated node.

Syntax

Following is the syntax for the usage of the cloneNode method.

nodeObject.cloneNode(boolean deep)

Parameter Description

deep
If true, recursively clones the subtree under the specified node; if false,

clone only the node itself (and its attributes, if it is an Element).

This method returns the duplicate Node.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

XML DOM

 98

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of cloneNode method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

XML DOM

 99

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee')[0];

 clone_node = x.cloneNode(true);

 xmlDoc.documentElement.appendChild(clone_node);

 document.write("Following list has cloned node: ");

 document.write("
");

 y = xmlDoc.getElementsByTagName("LastName");

 for (i = 0; i < y.length; i ++)

 {

 document.write(y[i].childNodes[0].nodeValue);

 document.write("
");

 }

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_clonenode.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Following list has cloned node:

Patil

Mishra

Sharma

Patil

You will notice that the first LastName Patil is cloned.

compareDocumentPosition

Method compareDocumentPosition is used to compare the position of the current node

against a specified node according to the document order. Returns unsigned short, how

the node is positioned relatively to the reference node.

Syntax

Following is the syntax for the usage of the compareDocumentPosition method.

XML DOM

 100

nodeObject.compareDocumentPosition(Node other)

Parameter Description

other It is the reference node to which the current node is compared. It is of

type Node.

This method returns how the node is positioned relatively to the reference node.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the compareDocumentPosition method:

<!DOCTYPE html>

<html>

XML DOM

 101

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 f1 = xmlDoc.getElementsByTagName('LastName')[1];

 f2 = xmlDoc.getElementsByTagName('LastName')[2];

 document.write("Result after comparing the position : ")

 document.write(f1.compareDocumentPosition(f2));

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_comparedocumentposition.htm on the server path (this file

and node.xml should be on the same path in your server).We will get the output as shown

below:

Result after comparing the position : 4

XML DOM

 102

hasChildNodes

The method hasChildNodes returns whether this node has any children. This method

returns true if the current node has child nodes otherwise false.

Syntax

Following is the syntax for the usage of the hasChildNodes method.

nodeObject.hasChildNodes()

This method returns boolean true value if the node has any child, false otherwise.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

[[

Following example demonstrates the usage of the hasChildNodes method:

<!DOCTYPE html>

XML DOM

 103

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 y = xmlDoc.getElementsByTagName("Employee")[0];

 document.write("Checks for the existence of child node : ");

 document.write(y.hasChildNodes());

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_haschildnodes.htm on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

Checks for the existence of child node : true

XML DOM

 104

insertBefore

Method insertBefore inserts a new node as a child of this node, directly before an existing

child of this node. It returns the node being inserted.

Syntax

Following is the syntax for the usage of the insertBefore method.

nodeObject.insertBefore(Node newChild, Node refChild)

Parameter Description

newChild It is the new node to be added. It is of type Node.

refChild It is used as a reference node before which a new node is added. It is of

type Node.

This method returns the node being inserted.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

XML DOM

 105

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the insertBefore method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc=loadXMLDoc("/dom/node.xml");

 create_e = xmlDoc.createElement("Email");

 f1 = xmlDoc.documentElement;

 f2 = xmlDoc.getElementsByTagName("Email");

XML DOM

 106

 document.write("No of Email elements before insert operation: " +
f2.length);

 document.write("
");

 f1.insertBefore(create_e,f2[3]);

 f2 = xmlDoc.getElementsByTagName("Email");

 document.write("No of Email elements after insert operation: " +
f2.length);

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_insertbefore.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

No of Email elements before insert operation: 3

No of Email elements after insert operation: 4

isDefaultNamespace

The method isDefaultNamespace accepts a namespace URI as an argument and returns

a Boolean with a value of true if the namespace is the default namespace on the given

node or false if not.

Syntax

Following is the syntax for the usage of the isDefaultNamespace method.

result = nodeobject.isDefaultNamespace(namespaceURI)

Parameter Description

namespaceURI It is a String representing the namespace against which the element

will be checked.

This method returns boolean true or false.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

XML DOM

 107

 <Employee Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName>Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName>Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

Following example demonstrates the usage of the isDefaultNamespace method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

XML DOM

 108

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("Namespace URI of Employee node is:
"+x.item(0).attributes[0].namespaceURI);

 var uri = "http://www.tutorials.com/technical/";

 y = xmlDoc.getElementsByTagNameNS(uri,'FirstName')[0];

 document.write("
isDefaultNamespace: ");

 document.write(y.isDefaultNamespace(uri));

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_isDefaultNamespace.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

Namespace URI of Employee node is: http://www.w3.org/2000/xmlns/

isDefaultNamespace: false

isEqualNode

Method isEqualNode tests whether two nodes are equal. Returns true if the nodes are

equal, false otherwise.

Syntax

Following is the syntax for the usage of the isEqualNode method.

nodeObject.isEqualNode(Node arg)

Parameter Description

arg It is the node with which equality condition is evaluated. It is of typeNode.

This method returns the boolean true if the nodes are equal, false if otherwise.

Example

XML DOM

 109

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the isEqualNode method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

XML DOM

 110

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 e1 = xmlDoc.getElementsByTagName("Employee")[1];

 e2 = xmlDoc.getElementsByTagName("Employee")[2];

 document.write("Checks the equality result : ")

 document.write(e1.isEqualNode(e2));

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_isequalnode.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Checks the equality result : false

lookupNamespaceURI

Method lookupNamespaceURI gets the URI of the namespace associated with the

namespace prefix, starting from the current node.

Syntax

Following is the syntax for the usage of the lookupNamespaceURI method.

nodeObject.lookupNamespaceURI(DOMString prefix)

Parameter Description

prefix Based on this parameter namespace uri is return if present any. It is of

type DOMString.

XML DOM

 111

This method returns the associated namespace URI or null if none is found.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical">

 <e:FirstName>Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName>Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniymishra@xyz.com</n:Email>

</Employee>

</Company>

[

Following example demonstrates the usage of the lookupNamespaceURI method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

XML DOM

 112

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 y = xmlDoc.getElementsByTagName("Employee")[0];

 document.write("lookupNameSpaceURI is : ")

 document.write(y.lookupNamespaceURI("e"));

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_namespaceuri.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

lookupNameSpaceURI is : http://www.tutorials.com/technical/

lookupPrefix

Method lookupPrefix returns the closest prefix defined in the current namespace for the

namespace URI. Returns an associated namespace prefix if found or null if none is found.

Syntax

Following is the syntax for the usage of the lookupPrefix method.

nodeObject.lookupPrefix(DOMString namespaceURI)

Parameter Description

namespaceURI Based on this parameter prefix is returned. It is of typeDOMString.

XML DOM

 113

This method returns the associated namespace prefix or null if none is found.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical">

 <e:FirstName>Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName>Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniymishra@xyz.com</n:Email>

</Employee>

</Company>

Following example demonstrates the usage of the lookupPrefix method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

XML DOM

 114

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 y=xmlDoc.getElementsByTagName("Employee")[0];

 document.write("lookupPrefix is : ")

 document.write(y.lookupPrefix("http://www.tutorials.com/technical/"));

 </script>

 </body>

</html>

[[[[[[[

Execution

Save this file as nodemethod_lookupprefix.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

lookupPrefix is : e

normalize

Method normalize adds all the text nodes including attribute nodes which define a normal

form where the structure of the nodes which contains elements, comments, processing

instructions, CDATA sections, and entity references separates the text nodes, i.e., neither

adjacent Text nodes nor empty Text nodes.

Syntax

Following is the syntax for the usage of the normalize method.

nodeobject.normalize();

This method has no parameters and no return value.

XML DOM

 115

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the normalize method:

<!DOCTYPE html>

<html>

<head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

XML DOM

 116

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

</head>

<body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.createElement('Employee');

 x.appendChild(document.createTextNode("EmployeeA "));

 x.appendChild(document.createTextNode("EmployeeB "));

 document.write("Before normalize
");

 document.write("Child node length: "+x.childNodes.length+"
");

 document.write("First child node:
"+x.childNodes[0].textContent+"
");

 document.write("Second child node:
"+x.childNodes[1].textContent+"
");

 x.normalize();

 document.write("After normalize
");

 document.write("Child node length: "+x.childNodes.length+"
");

 document.write("First child node:
"+x.childNodes[0].textContent+"
");

</script>

</body>

</html>

Execution

Save this file as nodemethod_normalise.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Before normalize

Child node length: 2

First child node: EmployeeA

Second child node: EmployeeB

After normalize

XML DOM

 117

Child node length: 1

First child node: EmployeeA EmployeeB

removeChild

Method removeChild is used to remove a specified child node from the current node.

Returns the node removed.

Syntax

Following is the syntax for the usage of the removeChild method.

nodeObject.removeChild(Node oldChild)

Parameter Description

oldChild Specifies child to be removed. It is of type Node.

This method returns the node removed.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

XML DOM

 118

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the removeChild method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 f1 = xmlDoc.documentElement;

 f2 = f1.childNodes[5];

 removedNode = f2.removeChild(f2.childNodes[5]);

 document.write("Removed node is : " + removedNode.nodeName);

 </script>

 </body>

</html>

Execution

XML DOM

 119

Save this file as nodemethod_removechild.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Removed node is : ContactNo

replaceChild

Method replaceChild is used to replace the old child node with a new node. This returns

the node replaced.

Syntax

Following is the syntax for the usage of the replaceChild method.

nodeObject.replaceChild(Node newChild, Node oldChild)

Parameter Description

newChild It is the new child to be replaced with the old child. It is of typeNode.

oldChild This parameter is replaced by the new child. It is of type Node.

This method returns the node replaced.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

XML DOM

 120

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the replaceChild method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.documentElement;

 create_e1 = xmlDoc.createElement("Employee");

 create_e2 = xmlDoc.createElement("Email");

XML DOM

 121

 create_t = xmlDoc.createTextNode("tanu@xyz.com");

 create_e2.appendChild(create_t);

 create_e1.appendChild(create_e2);

 y = xmlDoc.getElementsByTagName("Employee")[0]

 x.replaceChild(create_e1,y);

 z = xmlDoc.getElementsByTagName("Email")[0];

 document.write("After Replacement : ")

 document.write(z.childNodes[0].nodeValue);

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_replacechild.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

After Replacement : tanu@xyz.com

XML DOM

 122

The NodeList object specifies the abstraction of an ordered collection of nodes. The items

in the NodeList are accessible via an integral index, starting from 0.

Attributes

The following table lists the attributes of the NodeList object:

Attribute Type Description

length unsigned long It gives the number of nodes in the node list.

Object Attribute - length

Attribute length gives the number of nodes in the node list.

Syntax

Following is the syntax for the usage of the length attribute.

nodelistObject.length

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

18. XML DOM — NodeList Object

mailto:taniyamishra@xyz.com%3C/Email

XML DOM

 123

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

The following example parses an XML document (node.xml) into an XML DOM object and

extracts the length information using the length attribute.

<!DOCTYPE html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 y = xmlDoc.getElementsByTagName('FirstName');

 document.write("Length of node list: " + y.length);

 </script>

 </body>

</html>

Execution

Save this file as nodeattribute_length.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Length of node list: 3

https://www.tutorialspoint.com/dom/node.xml

XML DOM

 124

Methods

The following is the only method of the NodeList object.

Method Description

item()
It returns the indexth item in the collection. If index is greater than or equal

to the number of nodes in the list, this returns null.

Object Method — item

Method item returns the indexth item in the collection.

Syntax

Following is the syntax for the usage of the item attribute.

Node item(long index)

Where index is the index into the collection.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

XML DOM

 125

</Company>

The following example (nodelist_methods.htm) parses an XML document (node.xml) into

an XML DOM object and displays each item in the node list:

<!DOCTYPE html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 y=xmlDoc.getElementsByTagName("Employee");

 for (i=0; i<y.length; i++)

 {

 document.write(y.item(i).nodeName);

 document.write("
");

 }

 </script>

 </body>

</html>

Execution

Save this file as nodemethod_item.htm on the server path (this file and node.xml should

be on the same path in your server). We will get the output as shown below:

Employee

Employee

Employee

https://www.tutorialspoint.com/dom/node.xml
https://www.tutorialspoint.com/dom/node.xml

XML DOM

 126

The NamedNodeMap object is used to represent collections of nodes that can be accessed

by name.

Attributes

The following table lists the Property of the NamedNodeMap Object.

Attribute Type Description

length unsigned

long

It gives the number of nodes in this map. The range of valid

child node indices is 0 to length-1 inclusive.

NamedNodeMap Object Property- length

Property length gives the number of nodes in this map. The range of the valid child node

indices is 0 to length-1 inclusive.

Syntax

Following is the syntax for the usage of the length property.

nodemapObject.length

Example

node.xml contents are as below:

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

19. XML DOM — NamedNodeMap Object

XML DOM

 127

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the length property:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 x = xmlDoc.getElementsByTagName("Employee");

 document.write("Length is : ");

 document.write(x.item(0).attributes.length);

 </script>

 </body>

</html>

Execution

Save this file as namednodemapproperty_length.htm on the server path (this file and

node_methods.xml should be on the same path in your server). We will get the output as

shown below:

XML DOM

 128

Length is : 1

Methods

The following table lists the methods of the NamedNodeMap object.

Methods Description

getNamedItem () Retrieves the node specified by name.

getNamedItemNS ()
Retrieves a node specified by local name and namespace

URI.

item ()

Returns the indexth item in the map. If index is greater

than or equal to the number of nodes in this map, this

returns null.

removeNamedItem () Removes a node specified by name.

removeNamedItemNS ()
Removes a node specified by local name and namespace

URI.

setNamedItem ()

Adds a node using its nodeName attribute. If a node with

that name is already present in this map, it is replaced by

the new one.

setNamedItemNS ()

Adds a node using its namespaceURI and localName. If a

node with that namespace URI and that local name is

already present in this map, it is replaced by the new one.

Replacing a node by itself has no effect.

NamedNodeMap Object Method- getNamedItem

Method getNamedItem () retrieves the node specified by name.

Syntax

Following is the syntax for the usage of the getNamedItem() method.

nodemapObject.getNamedItem(name)

XML DOM

 129

Parameter Description

name This specifies the name of the node to retrieve. It is of typeDOMString.

This method returns the Node specified by name.

Example

node.xml contents are as below:

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the getNamedItem() method:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

XML DOM

 130

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 xmlDoc = xmlDoc.getElementsByTagName('Employee')[0].attributes;

 document.write("Name of attribute category for node Employee is: ");

 document.write(xmlDoc.getNamedItem('category').nodeValue);

 </script>

 </body>

</html>

Execution

Save this file as namednodemapmethod_getnameditem.htm on the server path (this file

and node_methods.xml should be on the same path in your server). We will get the output

as shown below:

Name of attribute category for node Employee is: Technical

NamedNodeMap Object Method- getNamedItemNS

Method getNamedItemNS () retrives node specified by local name and namespace URI.

Syntax

Following is the syntax for the usage of the getNamedItemNS() method.

nodemapObject.getNamedItemNS(namespaceURI, localName);

Parameter Description

namespaceURI It is the namespaceURI of the node to retrieve. It is of typeDOMString.

localName It is the local name of the node to retrieve. It is of typeDOMString.

This method returns namespaceURI and the local name of the specified node or null if they

do not have any value.

XML DOM

 131

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical">

 <e:FirstName e:language="English">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName>Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniymishra@xyz.com</n:Email>

</Employee>

</Company>

Following example demonstrates the usage of the getNamedItemNS() method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

XML DOM

 132

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 xmlDoc = xmlDoc.getElementsByTagName('e:FirstName')[0].attributes;

 document.write("Named Item Attribute node is :- ");

document.write(xmlDoc.getNamedItemNS("http://www.tutorials.com/technical/",'lan
guage').nodeName);

 document.write("
");

 document.write("Named Item Attribute value is :- ");

document.write(xmlDoc.getNamedItemNS("http://www.tutorials.com/technical/",'lan
guage').nodeValue);

 </script>

 </body>

</html>

Execution

Save this file as namednodemapmethod_getnameditemns.htm on the server path (this file

and node_ns.xml should be on the same path in your server). We will get the output as

shown below:

Named Item Attribute node is :- e:language

Named Item Attribute value is :- English

NamedNodeMap Object Method- item ()

Method item () returns the indexth item in the map. If index is greater than or equal to

the number of nodes in this map, this returns null.

Syntax

Following is the syntax for the usage of the item() method.

nodemapObject.item(index)

XML DOM

 133

Parameter Description

index
It specifies the position of the item into the map. It is of typeunsigned

long.

This method returns the indexth item in the map.

Example

node.xml contents are as below:

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the item() method:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

XML DOM

 134

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 x=xmlDoc.getElementsByTagName('Employee');

 item_name = x.item(0).attributes.getNamedItem("category");

 document.write("Get the specified item value : ")

 document.write(item_name.value);

 </script>

 </body>

</html>

Execution

Save this file as namednodemapmethod_item.htm on the server path (this file and

node_methods.xml should be on the same path in your server). We will get the output as

shown below:

Get the specified item value : Technical

NamedNodeMap Object Method- removeNamedItem

Method removeNamedItem() removes a node specified by name.

Syntax

Following is the syntax for the usage of the removeNamedItem() method.

nodemapObject.removeNamedItem(name)

Parameter Description

name This specifies the name of the node to remove. It is of typeDOMString.

XML DOM

 135

This method returns the removed node.
[

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the removeNamedItem() method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

XML DOM

 136

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 y = xmlDoc.getElementsByTagName('Employee')[0].attributes;

 document.write("Name of the attribute removed from 'category' : ")

 document.write(y.removeNamedItem('category').nodeValue);

 </script>

 </body>

</html>

Execution

Save this file as namednodemapmethod_removenameditem.htm on the server path (this

file and node.xml should be on the same path in your server). We will get the output as

shown below:

Name of the attribute removed from 'category' : Technical

NamedNodeMap Object Method- removeNamedItemNS

Method removeNamedItemNS() removes a node specified by the local name and the

namespace URI.

Syntax

Following is the syntax for the usage of the removeNamedItemNS() method.

nodemapObject.removeNamedItem(namespaceURI, localName)

XML DOM

 137

Parameter Description

namespaceURI It is the namespaceURI of the node to remove. It is of typeDOMString.

localName It is the local name of the node to remove. It is of typeDOMString.

This method removes specified namespaceURI and the local name of the node or null if

they do not have any value.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

<Employee xmlns:e="http://www.tutorials.com/technical/" category="technical">

 <e:FirstName e:language="English">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName>Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniymishra@xyz.com</n:Email>

</Employee>

</Company>

Following example demonstrates the usage of the removeNamedItemNS() method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

XML DOM

 138

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 xmlDoc = xmlDoc.getElementsByTagName('e:FirstName')[0].attributes;

 document.write("Removed Item Attribute node is :- ");

document.write(xmlDoc.removeNamedItemNS("http://www.tutorials.com/technical/",'
language').nodeName);

 </script>

 </body>

</html>

Execution

Save this file as namednodemapmethod_removenameditemns.htm on the server path

(this file and node_ns.xml should be on the same path in your server). We will get the

output as shown below:

Removed Item Attribute node is :- e:language

NamedNodeMap Object Method- setNamedItem

Method setNamedItem() adds a node using its nodeName attribute. If a node with that

name is already present in this map, it is replaced by the new one.

XML DOM

 139

Syntax

Following is the syntax for the usage of the setNamedItem() method.

nodemapObject.setNamedItem(arg)

Parameter Description

arg
This stores the node in the map. This node value can be accessed later

using the nodeName attribute. It is of type node.

This method returns the new updated value of the node if the existing node is replaced,

otherwise null is returned.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

XML DOM

 140

Following example demonstrates the usage of the setNamedItem() method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 c = xmlDoc.createAttribute("category");

 c.value = "TutorialsPoint";

 y = xmlDoc.getElementsByTagName('Employee')[0].attributes;

 y.setNamedItem(c);

 document.write("Set named Item value is : ")

 document.write(y.getNamedItem('category').nodeValue);

 </script>

 </body>

</html>

XML DOM

 141

Execution

Save this file as namednodemapmethod_setnameditem.htm on the server path (this file

and node.xml should be on the same path in your server). We will get the output as shown

below:

Set named Item value is : TutorialsPoint

NamedNodeMap Object Method- setNamedItemNS

Method setNamedItemNS() adds a node using its nodeName attribute. If a node with that

name is already present in this map, it is replaced by the new one.

Syntax

Following is the syntax for the usage of the setNamedItemNS() method.

nodemapObject.setNamedItemNS(arg)

Parameter Description

arg This stores the node in the map. This node can be accessed later using

the values of its namespaceURI and localNameattribute. It is of

type node.

This method replaces the old node and returns the new node value.

Example

node_ns.xml contents are as below:

<?xml version ="1.0"?>

<Company>

<Employee xmlns:e = "http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:language="English">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

</Employee>

<Employee xmlns:n ="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName>Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

XML DOM

 142

 <n:Email>taniymishra@xyz.com</n:Email>

</Employee>

</Company>

Following example demonstrates the usage of the setNamedItemNS() method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 c =
xmlDoc.createAttributeNS("http://www.tutorials.com/technical/",'language');

 c.value = "CEO";

 y = xmlDoc.getElementsByTagName('e:FirstName')[0].attributes;

 y.setNamedItemNS(c);

 document.write("Set named Item NS value is : ")

document.write(y.getNamedItemNS("http://www.tutorials.com/technical/",'language
').nodeValue);

XML DOM

 143

 </script>

 </body>

</html>

Execution

Save this file as namednodemapmethod_setnameditemns.htm on the server path (this file

and node_ns.xml should be on the same path in your server). We will get the output as

shown below:

Set named Item NS value is : CEO

XML DOM

 144

The DOMImplementation object provides a number of methods for performing operations

that are independent of any particular instance of the document object model.

Methods

Following table lists the methods of the DOMImplementation object:

Methods Description

createDocument(namespaceURI, qualifiedName,

doctype)

It creates a DOM Document object

of the specified type with its

document element.

createDocumentType(qualifiedName, publicId,

systemId)

It creates an

empty DocumentTypenode.

getFeature(feature, version)

This method returns a specialized

object which implements the

specialized APIs of the specified

feature and version. This has been

removed. Refer specs.

hasFeature(feature, version)

This method tests if the DOM

implementation implements a

specific feature and version.

DOMImplementation Object Method- createdocument

The method createDocument () is used to create a DOM Document object of the specified

type with its document element.

Syntax

Following is the syntax of the createDocument () method.

Document doc = document.implementation.createDocument(namespaceURI,
qualifiedNameStr, documentType);

 namespaceURI is the namespace URI of the document element to be created or null.

 qualifiedName is the qualified name of the document element to be created or null.

 doctype is the type of document to be created or null.

20. XML DOM — DOMImplementation Object

https://dom.spec.whatwg.org/#domimplementation

XML DOM

 145

 This method returns a new Document object with its document element.

Example

Following example demonstrates the usage of the createDocument () method:

<!DOCTYPE html>

<html>

 <body>

 <script>

 var doc = document.implementation.createDocument
('http://www.w3.org/1999/xhtml', 'html', null);

 var body = document.createElementNS('http://www.w3.org/1999/xhtml',
'body');

 body.setAttribute('id', 'Company');

 doc.documentElement.appendChild(body);

 document.write(doc.getElementById('Company')); // [object HTMLBodyElement]

 </script>

 </body>

</html>

Execution

Save this file as domimplementation_createdocument.htm on the server path (this file and

node.xml should be on the same path in your server).We will get the output as shown

below:

[object HTMLBodyElement]

DOMImplementation Object Method- createdocument

Method createDocumentType () is used to create an empty DocumentType node. Entity

declarations and notations are not made available.

Syntax

Following is the syntax of the createDocument() method.

Document doc = document.implementation.createDocumentType(qualifiedName,
publicId, systemId);

 qualifiedName is the qualified name of the document type to be created.

 publicId is the external subset public identifier.

 systemId external subset system identifier.

XML DOM

 146

 This method returns a new DocumentType node withNode.ownerDocument set to

null.

Example

Following example demonstrates the usage of the createDocumentType () method:

<!DOCTYPE html>

<html>

 <body>

 <script>

 var dt = document.implementation.createDocumentType('svg:svg', '-
//W3C//DTD SVG 1.1//EN', 'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd');

 var d =
document.implementation.createDocument('http://www.w3.org/2000/svg', 'svg:svg',
dt);

 document.write(d.doctype.publicId); // -//W3C//DTD SVG 1.1//EN

 </script>

 </body>

</html>

Execution

Save this file as domimplementation_createdocumenttype.htm on the server path (this

file and node.xml should be on the same path in your server). We will get the output as

shown below:

-//W3C//DTD SVG 1.1//EN

DOMImplementation Object Method- hasFeature

Method hasFeature () tests if the DOM implementation implements a specific feature and

version as defined in DOM Features.

Syntax

Following is the syntax of hasFeature () method.

flag = document.implementation.hasFeature(feature, version);

XML DOM

 147

Parameter Description

feature It is a DOMString representing the feature name.

version
It is a DOMString representing the version of the specification defining the

feature.

Example

Following example demonstrates the usage of the hasFeature () method:

<!DOCTYPE html>

<html>

<body>

 <script>

 document.write(document.implementation.hasFeature('Core', '3.0'));

</script>

</body>

</html>

Execution

Save this file as domimplementation_hasfeature.htm on the server path. We will get the

output as shown below:

true

XML DOM

 148

The DocumentType objects are the key to access the document's data and in the

document, the doctype attribute can have either the null value or the DocumentType

Object value. These DocumentType objects act as an interface to the entities described

for an XML document.

Attributes

The following table lists the attributes of the DocumentType object:

Attribute Type Description

name DOMString
It returns the name of the DTD which is written

immediately next to the keyword !DOCTYPE.

entities NamedNodeMap

It returns a NamedNodeMap object containing

the general entities, both external and internal,

declared in the DTD.

notations NamedNodeMap
It returns a NamedNodeMap containing the

notations declared in the DTD.

internalSubset DOMString

It returns an internal subset as a string, or null

if there is none. This has been removed. Refer

specs.

publicId DOMString
It returns the public identifier of the external

subset.

systemId DOMString
It returns the system identifier of the external

subset. This may be an absolute URI or not.

DocumentType Object Attribute - name

The attribute name() returns the name of the DTD which is written immediately next to

the keyword !DOCTYPE.

Syntax

Following is the syntax for the usage of the name attribute.

documentObj.doctype.name

21. XML DOM — DocumentType Object

https://dom.spec.whatwg.org/#documenttype

XML DOM

 149

Example

address_internal_dtd.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE address [

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

]>

<address>

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

XML DOM

 150

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/address_internal_dtd.xml");

 document.write("The name next to the keyword doctype is:"+
xmlDoc.doctype.name);

 </script>

 </body>

</html>

Execution

Save this file as documenttype_name.html on the server path (this file and

address_internal_dtd.xml should be on the same path in your server). We will get the

output as shown below:

The name next to the keyword doctype is: address

DocumentType Object Attribute - entities

The attribute entities return a NamedNodeMap object containing the general entities, both

external and internal, declared in the DTD.

Syntax

Following is the syntax for the usage of the entities attribute.

documentObj.doctype.entities

Example

address_internal_dtd.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE address [

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

]>

<address>

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

XML DOM

 151

</address>

Following example demonstrates the usage of the entities attribute:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/address_internal_dtd.xml");

 x = xmlDoc.doctype.entities;

 document.write("Nodename is: " + xmlDoc.nodeName);

 document.write("
");

 document.write(" nodetype is: " + xmlDoc.nodeType + "
");

 y = xmlDoc.documentElement;

 document.write("Nodename is: " + y.nodeName);

 document.write("
");

 document.write(" nodetype is: " + y.nodeType + "
");

 </script>

XML DOM

 152

 </body>

</html>

Execution

Save this file as documenttype_entities.html on the server path (this file and

address_internal_dtd.xml should be on the same path in your server). We will get the

output as shown below:

Nodename is: #document

nodetype is: 9

Nodename is: address

nodetype is: 1

DocumentType Object Attribute - notation

The attribute notations containing the notations declared in the DTD.

Example

notation.xml contents are as below:

<?xml version = "1.0"?>

<!DOCTYPE address [

 <!ELEMENT address (#PCDATA)>

 <!NOTATION name PUBLIC "Tanmay">

 <!ATTLIST address category NOTATION (name) #REQUIRED>

]>

<address name = "Tanmay">Hello world!!!!!!</address>

Following example demonstrates the usage of the notations attribute:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

XML DOM

 153

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation.xml");

 var notations = xmlDoc.doctype.notations;

 document.write("notations: "+notations);

 document.write("Item "+notations.getNamedItem('Tanmay'));

 </script>

 </body>

</html>

Execution

Save this file as documenttype_notations.html on the server path (this file and

notation.xml should be on the same path in your server).We will get the output as shown

below:

notations: undefined

This collection is very sparsely supported by browsers, but there's no other way to retrieve

this data.

DocumentType Object Attribute - publicId

The attribute publicId returns the public identifier of the external subset.

Syntax

Following is the syntax for usage of the publicId attribute.

document.doctype.publicId;

XML DOM

 154

Example

notation.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<address id="firstelement">

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the publicId attribute:

<!DOCTYPE html>

<html>

<head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

</head>

<body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

 document.write("publicid : "+xmlDoc.doctype.publicId);

 </script>

XML DOM

 155

</body>

</html>

Execution

Save this file as documenttype_publicid.html on the server path (this file and notation.xml

should be on the same path in your server). We will get the output as shown below:

publicid : -//W3C//DTD XHTML 1.1//EN

[

DocumentType Object Attribute - systemId

The attribute systemId returns the system identifier of the external subset. This may be

an absolute URI or not.

Syntax

Following is the syntax for the usage of the systemId attribute.

document.doctype.systemId;

[

Example

notation.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<address id="firstelement">

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the systemId attribute:

<!DOCTYPE html>

<html>

<head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

XML DOM

 156

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

</head>

<body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

 document.write("SystemId : "+xmlDoc.doctype.systemId);

</script>

</body>

</html>

Execution

Save this file as documenttype_systemId.html on the server path (this file and

notation.xml should be on the same path in your server). We will get the output as shown

below:

SystemId : http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

XML DOM

 157

ProcessingInstruction gives that application-specific information which is generally

included in the prolog section of the XML document.

Processing instructions (PIs) can be used to pass information to applications. PIs can

appear anywhere in the document outside the markup. They can appear in the prolog,

including the document type definition (DTD), in textual content, or after the document.

A PI starts with a special tag <? and ends with ?>. Processing of the contents ends

immediately after the string ?> is encountered.

Attributes

The following table lists the attributes of the ProcessingInstruction object:

Attribute Type Description

data DOMString
It is a character that describes the information for the

application to process immediately preceding the ?>.

target DOMString
This identifies the application to which the instruction or the

data is directed.

ProcessingInstruction Object Attribute- data

The attribute data is a character that describes the information for the application to

process immediately preceding the ?>.

Syntax

Following is the syntax for the usage of the data attribute.

ProcessingInstruction.target

Parameter Description

data It is a character that describes the information for the application to

process immediately preceding the ?>.

22. DOM — ProcessingInstruction Object

XML DOM

 158

Example

Following example demonstrates the usage of the data attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 // loads the xml string in a dom object

 function loadXMLString(t)

 {

 // for non IE browsers

 if (window.DOMParser)

 {

 // create an instance for xml dom object

 parser=new DOMParser();

 xmlDoc=parser.parseFromString(t,"text/xml");

 }

 // code for IE

 else

 {

 // create an instance for xml dom object

 xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

 xmlDoc.async=false;

 xmlDoc.loadXML(t);

 }

 return xmlDoc;

 }

 function get_firstChild(p)

 {

 a = p.firstChild;

 return a;

 }

 </script>

 </head>

 <body>

 <script>

 var xml="<Employee>";

 xml=xml+"<FirstName>";

 xml=xml+"<?piTarget piData more piData?>";

XML DOM

 159

 xml=xml+"</FirstName>";

 xml=xml+"</Employee>";

 // calls the loadXMLString() with "text" function and store the xml dom in
a variable

 var xmlDoc=loadXMLString(xml);

 var x = get_firstChild(xmlDoc.getElementsByTagName("FirstName")[0]);

 document.write("First child is : ");

 document.write(x.nodeName);

 //the following should be "piData more piData"

 alert(x.data);

 //the following should be "piTarget"

 alert(x.target);

 </script>

 </body>

</html>

[[[[[

Execution

Save this file as dom_processinginstruction_data.htm on the server path. We will get the

output as shown below:

XML DOM

 160

ProcessingInstruction Object Attribute- target

Attribute target identifies the application to which the instruction or data is directed.

Syntax

Following is the syntax for the usage of the target attribute.

ProcessingInstruction.target

Parameter Description

target Identifies the application to which the instruction or the data is directed.

Example

Following example demonstrates the usage of the target attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 // loads the xml string in a dom object

 function loadXMLString(t)

 {

 // for non IE browsers

 if (window.DOMParser)

 {

 // create an instance for xml dom object

 parser=new DOMParser();

 xmlDoc=parser.parseFromString(t,"text/xml");

 }

 // code for IE

 else

 {

 // create an instance for xml dom object

 xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

 xmlDoc.async=false;

 xmlDoc.loadXML(t);

 }

 return xmlDoc;

 }

XML DOM

 161

 function get_firstChild(p)

 {

 a = p.firstChild;

 return a;

 }

 </script>

 </head>

 <body>

 <script>

 var xml="<Employee>";

 xml=xml+"<FirstName>";

 xml=xml+"<?piTarget piData more piData?>";

 xml=xml+"</FirstName>";

 xml=xml+"</Employee>";

 // calls the loadXMLString() with "text" function and store the xml dom in
a variable

 var xmlDoc=loadXMLString(xml);

 var x = get_firstChild(xmlDoc.getElementsByTagName("FirstName")[0]);

 document.write("First child is : ");

 document.write(x.nodeName);

 //the following should be "piData more piData"

 alert(x.data);

 //the following should be "piTarget"

 alert(x.target);

 </script>

 </body>

</html>

XML DOM

 162

Execution

Save this file as dom_processinginstruction_target.htm on the server path. We will get the

output as shown below:

XML DOM

 163

Entity interface represents a known entity, either parsed or unparsed, in an XML document.

The nodeName attribute that is inherited from Node contains the name of the entity.

An Entity object does not have any parent node, and all its successor nodes are read-only.

Attributes

The following table lists the attributes of the Entity object:

Attribute Type Description

inputEncoding DOMString

This specifies the encoding used by the

external parsed entity. Its value is null if it

is an entity from the internal subset or if it

is not known.

notationName DOMString

For an unparsed entities, it gives the name

of the notation and its value is null for the

parsed entities.

publicId DOMString
It gives the name of the public identifier

associated with the entity.

systemId DOMString
It gives the name of the system identifier

associated with the entity.

xmlEncoding DOMString

It gives the xml encoding included as a part

of the text declaration for the external

parsed entity, null otherwise.

xmlVersion DOMString

It gives the xml version included as a part

of the text declaration for the external

parsed entity, null otherwise.

Entity Object Attribute- inputEncoding

Attribute inputEncoding specifies the encoding used by the external parsed entity. Its

value is null if it is an entity from the internal subset or if it is not known.

23. DOM — Entity Object

XML DOM

 164

Syntax

Following is the syntax for the usage of the inputEncoding attribute.

entityObj.inputEncoding

Example

note.xml contents are as below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<Company>

 <Employee category="Technical" id="firstelement">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the inputEncoding attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

XML DOM

 165

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 document.write("inputEncoding is : ")

 document.write(xmlDoc.inputEncoding);

 </script>

 </body>

</html>

Execution

Save this file as entityattribute_inputencoding.htm on the server path (this file and

note.xml should be on the same path in your server). We will get the output as shown

below:

inputEncoding is : UTF-8

Entity Object Attribute- notationName

Attribute notationName gives the name of the notation and value for an unparsed entity.

For the parsed entities its value is null.

Syntax

Following is the syntax for the usage of the notationName attribute.

XML DOM

 166

Example

notation.xml contents are as below:

<?xml version="1.0"?>

<!DOCTYPE address [

 <!ELEMENT address (#PCDATA)>

 <!NOTATION name PUBLIC "Tanmay">

 <!ATTLIST address category NOTATION (name) #REQUIRED>

]>

<address name="Tanmay">Hello world!!!!!!</address>

[[[[[

Following example demonstrates the usage of the notationName attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation.xml");

 x = xmlDoc.getElementsByTagName('address');

 document.write("Name of the attribute notation is : ")

XML DOM

 167

 document.write(x.item(0).attributes[0].nodeName);

 document.write("
")

 document.write("Value of the attribute notation is : ");

 document.write(x.item(0).attributes[0].nodeValue);

 </script>

 </body>

</html>

Execution

Save this file as entityattribute_notations.htm on the server path (this file and

notation.xml should be on the same path in your server). We will get the output as shown

below:

Name of the attribute notation is : name

Value of the attribute notation is : Tanmay

Entity Object Attribute - publicId

The attribute publicId returns the public identifier of the associated entity or returns null.

Syntax

Following is the syntax for the usage of the publicId attribute.

document.doctype.publicId;

Example

notation.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<address id="firstelement">

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

XML DOM

 168

Following example demonstrates the usage of the publicId attribute:

<!DOCTYPE html>

<html>

<head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

</head>

<body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

 document.write("publicid : "+xmlDoc.doctype.publicId);

 </script>

</body>

</html>

Execution

Save this file as entity_publicid.html on the server path (this file and notation.xml should

be on the same path in your server). We will get the output as shown below:

publicid : -//W3C//DTD XHTML 1.1//EN

XML DOM

 169

Entity Object Attribute - systemId

The attribute systemId returns the system identifier of the associated entity or returns

null.

Syntax

Following is the syntax for the usage of the systemId attribute.

document.doctype.systemId;

Example

notation.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<address id="firstelement">

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the systemId attribute:

<!DOCTYPE html>

<html>

<head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

XML DOM

 170

 }

 </script>

</head>

<body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

 document.write("SystemId : "+xmlDoc.doctype.systemId);

</script>

</body>

</html>

Execution

Save this file as entity_systemId.html on the server path (this file and notation.xml should

be on the same path in your server). We will get the output as shown below:

SystemId : http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

Entity Object Attribute- xmlEncoding

Attribute xmlEncoding gives the xml encoding included as a part of the text declaration for

the external parsed entity, null otherwise.

Syntax

Following is the syntax for the usage of the xmlEncoding attribute.

entityObj.xmlEncoding

Example

node.xml contents are as below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

XML DOM

 171

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the xmlEncoding attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

XML DOM

 172

 document.write("xmlEncoding is : ")

 document.write(xmlDoc.xmlEncoding);

 </script>

 </body>

</html>

Execution

Save this file as entityattribute_xmlencoding.htm on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

xmlEncoding is : undefined

Entity Object Attribute - xmlVersion

Attribute xmlVersion gives the xml version included as a part of the text declaration for

the external parsed entity, null otherwise.

Syntax

Following is the syntax for the usage of the xmlVersion attribute.

entotyObj.xmlVersion

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

XML DOM

 173

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the xmlVersion attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 document.write("xmlVersion is : ")

 document.write(xmlDoc.xmlVersion);

 </script>

 </body>

</html>

XML DOM

 174

Execution

Save this file as entityattribute_xmlversion.htm on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

xmlVersion is : undefined

XML DOM

 175

The EntityReference objects are the general entity references which are inserted into the

XML document providing scope to replace the text. The EntityReference Object does not

work for the pre-defined entities since they are considered to be expanded by the HTML

or the XML processor.

This interface does not have properties or methods of its own but inherits fromNode.

24. XML DOM — Entity Reference Object

XML DOM

 176

In this chapter, we will study about the XML DOM Notation object. The notation object

property provides a scope to recognize the format of elements with a notation attribute, a

particular processing instruction or a non-XML data. The Node Object properties and

methods can be performed on the Notation Object since that is also considered as a Node.

This object inherits methods and properties from Node. Its nodeName is the notation

name. Has no parent.

Attributes

The following table lists the attributes of the Notation object:

Attribute Type Description

publicID DOMString
It gives the name of the public identifier associated with the

notation.

systemID DOMString
It gives the name of the system identifier associated with the

notation.

Notation Object Attribute - publicID

The public identifier of a Notation; or null if no public identifier is specified.

Syntax

Following is the syntax for the usage of the publicID attribute.

var pubid = document.doctype.publicId;

Example

notation_xhtml.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<address>

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

25. XML DOM — Notation Object

XML DOM

 177

</address>

Following example demonstrates the usage of the publicID attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

 document.write("The publicId asscoiated with the notation is:"+
xmlDoc.doctype.publicId);

 </script>

 </body>

</html>

Execution

Save this file as notationattribute_publicid.html on the server path (this file and

notation.xml should be on the same path in your server). We will get the output as shown

below:

The publicId asscoiated with the notation is: -//W3C//DTD XHTML 1.1//EN

XML DOM

 178

Notation Object Attribute - systemId

The system identifier of a Notation, or null if no system identifier is specified.

Syntax

Following is the syntax for the usage of the systemId attribute.

var sysid = document.doctype.systemId;

Example

notation_xhtml.xml contents are as below:

<?xml version = "1.0" encoding = "UTF-8" standalone = "no"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<address>

<name>Tanmay Patil</name >

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Following example demonstrates the usage of the systemId attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

XML DOM

 179

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/notation_xhtml.xml");

 document.write("The systemId asscoiated with the notation is:"+
xmlDoc.doctype.systemId);

 </script>

 </body>

</html>

Execution

Save this file as notationattribute_systemsid.html on the server path (this file and

notation.xml should be on the same path in your server). We will get the output as shown

below:

The systemId asscoiated with the notation
is:http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

XML DOM

 180

The XML elements can be defined as building blocks of XML. Elements can behave as

containers to hold text, elements, attributes, media objects or all of these. Whenever

parser parses an XML document against the well-formedness, parser navigates through

an element node. An element node contains the text within it which is called the text node.

Element object inherits the properties and the methods of the Node object as element

object is also considered as a Node. Other than the node object properties and methods,

it has the following properties and methods.

Properties

The following table lists the attributes of the Element object:

Attribute Type Description

tagName DOMString It gives the name of the tag for the specified element.

schemaTypeInfo TypeInfo It represents the type information associated with this

element. This has been removed. Refer specs.

Element Object Attribute - tagname

The attribute tagname gives the name of the tag for the specified element.

Syntax

Following is the syntax for the usage of the tagname attribute.

elementObj.tagName

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

26. DOM — Element Object

https://dom.spec.whatwg.org/#interface-element

XML DOM

 181

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the tagname attribute:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 x=xmlDoc.getElementsByTagName("Email")[0];

 document.write("Tagname is :"+ x.tagName);

 </script>

 </body>

XML DOM

 182

</html>

Execution

Save this file as elementattribute_tagname.html on the server path (this file and node.xml

should be on the same path in your server).We will get the output as shown below:

Tagname is : Email

Methods

Below table lists the Element Object methods:

Methods Type Description

getAttribute() DOMString

Retrieves the value of the

attribute if exists for the specified

element.

getAttributeNS() DOMString
Retrieves an attribute value by

local name and namespace URI.

getAttributeNode() Attr

Retrieves the name of the

attribute node from the current

element.

getAttributeNodeNS() Attr
Retrieves an Attr node by local

name and namespace URI.

getElementsByTagName() NodeList

Returns a NodeList of all

descendant Elements with a

given tag name, in document

order.

getElementsByTagNameNS() NodeList

Returns a NodeList of all the

descendant Elements with a

given local name and namespace

URI in document order.

hasAttribute() boolean

Returns true when an attribute

with a given name is specified on

this element or has a default

value, false otherwise.

XML DOM

 183

hasAttributeNS() boolean

Returns true when an attribute

with a given local name and

namespace URI is specified on

this element or has a default

value, false otherwise.

removeAttribute() No Return Value Removes an attribute by name.

removeAttributeNS No Return Value
Removes an attribute by local

name and namespace URI.

removeAttributeNode() Attr
Specified attribute node is

removed from the element.

setAttribute() No Return Value
Sets a new attribute value to the

existing element.

setAttributeNS() No Return Value

Adds a new attribute. If an

attribute with the same local

name and namespace URI is

already present on the element,

its prefix is changed to be the

prefix part of the qualifiedName,

and its value is changed to be the

value parameter.

setAttributeNode() Attr
Sets a new attribute node to the

existing element.

setAttributeNodeNS Attr

Adds a new attribute. If an

attribute with that local name

and that namespace URI is

already present in the element, it

is replaced by the new one.

setIdAttribute No Return Value

If the parameter isId is true, this

method declares the specified

attribute to be a user-determined

ID attribute. This has been

removed. Refer specs.

setIdAttributeNS No Return Value

If the parameter Id is true, this

method declares the specified

attribute to be a user-determined

ID attribute. This has been

removed. Refer specs.

https://dom.spec.whatwg.org/#interface-element
https://dom.spec.whatwg.org/#interface-element

XML DOM

 184

Element Object method - getAttribute

The getAttribute method gives the value of the attribute if it exists for a specified element.

Syntax

Following is the syntax for the usage of the getAttribute method.

elementObj.getAttribute(name)

Parameter Description

Name It holds the name of the attribute to retrieve.

This method returns the value of the attribute as a string if present, otherwise it will be

specified as null.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

XML DOM

 185

Following example demonstrates the usage of the getAttribute method:

<!DOCTYPE html>

<html>

 <body>

 <script>

 if (window.XMLHttpRequest)

 {

 xmlhttp = new XMLHttpRequest();

 }

 else

 {

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 x=xmlDoc.getElementsByTagName('Employee')[2];

 document.write("The attribute is: ");

 document.write(x.getAttribute('category'));

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_getattribute.html on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

The attribute is: Management

Element Object Method - getAttributeNS

Method getAttributeNS retrieves an attribute value by local name and namespace URI.

Syntax

Following is the syntax for the usage of the getAttributeNS method.

elementObj.getAttributeNS(namespace, name)

XML DOM

 186

Parameter Description

namespace The namespace in which to look for the specified attribute.

name The name of the attribute to look for.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

Following example demonstrates the usage of the getAttributeNS method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

XML DOM

 187

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 x=xmlDoc.getElementsByTagName("FirstName")[0];

 ns="http://www.tutorials.com/technical/";

 document.write(x.getAttributeNS(ns,"lang"));

 </script>

 </body>

</html>

[[[[[[[

Execution

Save this file as elementattribute_getAttributeNS.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

en

[

Element Object method - getAttributeNode

The getAttributeNode method gives the name of the attribute node from the current

element.

Syntax

Following is the syntax for the usage of the getAttributeNode method.

elementObj.getAttributeNode(name)

Parameter Description

name It holds the name of the attribute to retrieve.

[

XML DOM

 188

This method returns the value of the attribute node as a string if present, otherwise if

specified as null.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category = "Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category = "Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category = "Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the getAttributeNode method:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

XML DOM

 189

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("Display all the attribute nodes ");

 document.write("
");

 for(i = 0;i < x.length;i++)

 {

 y = x.item(i).getAttributeNode("category");

 document.write(y.name);

 document.write(" = ");

 document.write(y.value);

 document.write("
");

 }

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_getattributenode.html on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

Display all the attribute nodes

category = technical

category = non-technical

category = Management

[[[[[[

XML DOM

 190

Element Object Method - getAttributeNodeNS

The method getAttributeNodeNS retrieves an Attr node by the local name and the

namespace URI.

Syntax

Following is the syntax for the usage of the getAttributeNodeNS method.

elementObj.getAttributeNodeNS(namespace,nodeName)

Parameter Description

namespace Is a string specifying the namespace of the attribute.

nodeName Is a string specifying the name of the attribute.

[

It returns an Attr node for specified attribute.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

[[[[[[[[

XML DOM

 191

Following example demonstrates the usage of the getAttributeNodeNS method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 x=xmlDoc.getElementsByTagName("FirstName")[0];

 ns="http://www.tutorials.com/technical/";

 var attributenodens = x.getAttributeNodeNS(ns,"lang")

 document.write("nodename: "+attributenodens.nodeName);

 document.write("
nodevalue: "+attributenodens.nodeValue);

 </script>

 </body>

</html>

[[[

XML DOM

 192

Execution

Save this file as elementattribute_getAttributeNodeNS.htm on the server path (this file

and node_ns.xml should be on the same path in your server). We will get the output as

shown below:

nodename: e:lang

nodevalue: en

[[

Element Object Method - getElementByTagName

The method getElementByTagName gives the value of the specified element.

Syntax

Following is the syntax for the usage of the getElementByTagName method.

getElementsByTagName(name)

Parameter Description

Name It holds the name of the attribute to retrieve.

[[[

This method returns the name of the tag.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category = "Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

</Company>

[[[[[

Following example demonstrates the usage of the getElementByTagName method:

XML DOM

 193

<!DOCTYPE html>

<html>

 <body>

 <div>

 FirstName:

 LastName:

 Category:

 </div>

 <script>

 if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/dom/node.xml",false);

 xmlhttp.send();

 xmlDoc = xmlhttp.responseXML;

 document.getElementById("FirstName").innerHTML=

 xmlDoc.getElementsByTagName("FirstName")[0].childNodes[0].nodeValue;

 document.getElementById("LastName").innerHTML=

 xmlDoc.getElementsByTagName("LastName")[0].childNodes[0].nodeValue;

 document.getElementById("Employee").innerHTML=

 xmlDoc.getElementsByTagName("Employee")[0].attributes[0].nodeValue;

 </script>

 </body>

</html>

Execution

XML DOM

 194

Save this file as elementattribute_getelementbytagname.htm on the server path (this file

and node_methods.xml should be on the same path in your server). We will get the output

as shown below:

FirstName: Tanmay

LastName: Patil

Category: technical

[[

Element Object Method- getElementsByTagNameNS

Method getElementsByTagNameNS returns a NodeList of all the descendant Elements with

a given local name and the namespace URI in document order.

Syntax

Following is the syntax for the usage of the getElementsByTagNameNS method.

elementObj.getElementsByTagNameNS(namespaceURI, localName)

Parameter Description

namespaceURI Is the namespace URI of elements to look for.

localName Is either the local name of elements to look for or the special value "*",

which matches all elements.

[

It returns a new NodeList object containing all the matched Elements.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

XML DOM

 195

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

Following example demonstrates the usage of the setAttributeNodeNS method:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 ns="http://www.tutorials.com/technical/";

 x = xmlDoc.getElementsByTagNameNS(ns, 'FirstName');

 document.write(x[0].nodeName); // returns: e:FirstName

 </script>

 </body>

</html>

Execution

XML DOM

 196

Save this file as elementattribute_getElementsByTagNameNS.htm on the server path (this

file and node_ns.xml should be on the same path in your server). We will get the output

as shown below:

e:FirstName

[

Element Object Method- hasAttribute

The Method hasAttribute returns true when an attribute with a given name is specified on

this element or has a default value, false if otherwise.

Syntax

Following is the syntax for the usage of the hasAttribute method.

elementObj.hasAttributeNS(attName)

Parameter Description

attName It is a string representing the name of the attribute.

[

It returns a Boolean true or false.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

XML DOM

 197

</Company>

[[

Following example demonstrates the usage of the hasAttribute method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 x = xmlDoc.getElementsByTagName("Employee")[0];

 document.write("value for hasattribute is:
"+x.hasAttribute("category"));

 </script>

 </body>

</html>

[

XML DOM

 198

Execution

Save this file as elementattribute_hasAttribute.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

value for hasattribute is: true

Element Object Method- hasAttribute

The method hasAttribute returns true when an attribute with a given name is specified on

this element or has a default value, false if otherwise.

Syntax

Following is the syntax for the usage of the hasAttribute method.

elementObj.hasAttributeNS(namespace,localName)

Parameter Description

namespace Is a string specifying the namespace of the attribute.

localName Is the name of the attribute.

[

It returns a Boolean true or false.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

XML DOM

 199

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

Following example demonstrates the usage of the hasAttributeNS method:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 ns="http://www.tutorials.com/technical/";

 x = xmlDoc.getElementsByTagName("FirstName")[0];

 document.write("value for hasattribute is:
"+x.hasAttributeNS(ns,"lang"));

 </script>

 </body>

</html>

Execution

XML DOM

 200

Save this file as elementattribute_hasAttributeNS.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

value for hasattribute is: true

[[

Element Object Method - removeAttribute

The method removeAttribute specifies that the attribute value is removed from the

element.

Syntax

Following is the syntax for the usage of the removeAttribute method.

elementObj.removeAttribute(name)

Parameter Description

name It holds the name of the attribute to retrieve.

[[

This method removes the specified name of the tag.

Example

node.xml contents are as below:

<?xml version = "1.0"?>

<Company>

 <Employee category = "Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category = "Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category = "Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

XML DOM

 201

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

[

Following example demonstrates the usage of the removeAttribute method:

<!DOCTYPE html>

 <html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("Before removing the attribute: ");

 document.write(x[1].getAttribute('category'));

 document.write("
");

 x[1].removeAttribute('category');

XML DOM

 202

 document.write("After removing the attribute: ");

 document.write(x[1].getAttribute('category'));

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_removeattribute.htm on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

Before removing the attribute: non-technical

After removing the attribute: null

Element Object Method- removeAttributeNS

The method removeAttributeNS removes an attribute by the local name and the

namespace URI.

Syntax

Following is the syntax for the usage of the removeAttributeNS method.

elementObj.removeAttributeNS(namespace,attrName)

Parameter Description

namespace Is a string specifying the namespace of the attribute.

attrName Is a string that names the attribute to be removed from the current node.

It returns an Attr node for the specified attribute.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

XML DOM

 203

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

Following example demonstrates the usage of the removeAttributeNS method:

<!DOCTYPE html>

 <html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 x=xmlDoc.getElementsByTagName("FirstName")[0];

 ns="http://www.tutorials.com/technical/";

XML DOM

 204

 document.write("Before removing the attributeNS: ");

 document.write(x.getAttributeNS(ns,"lang"));

 x.removeAttributeNS(ns,"lang");

 document.write("
After removing the attributeNS: ");

 document.write(x.getAttributeNS(ns,"lang"));

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_removeAttributeNS.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

Before removing the attributeNS: en

After removing the attributeNS: null

[[[[[[

Element Object method - removeAttributeNode

The removeAttributeNode method specifies attribute node that is removed from the

element.

Syntax

Following is the syntax for the usage of the removeAttributeNode method.

elementObj.removeAttributeNode(oldAttr)

Parameter Description

oldAttr It removes the specified attribute value from the attribute list.

[[[

This method removes the attribute node.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category = "Technical">

 <FirstName>Tanmay</FirstName>

XML DOM

 205

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category = "Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category = "Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the removeAttributeNode method:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

XML DOM

 206

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x=xmlDoc.getElementsByTagName('Employee');

 for (i = 0;i < x.length;i++)

 {

 while (x[i].attributes.length > 0)

 {

 y = x[i].attributes[0];

 z = x[i].removeAttributeNode(y);

 document.write("Removed : " + z.nodeName)

 document.write(": " + z.nodeValue)

 document.write("
")

 }

 }

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_removeAttributeNode.html on the server path (this file

and node.xml should be on the same path in your server). We will get the output as shown

below:

Removed : category: technical

Removed : category: non-technical

Removed : category: Management

Element Object method - setAttribute

The setAttribute method sets a new attribute value to the existing element.

Syntax

Following is the syntax for usage of the setAttribute method.

elementObj.setAttribute(name)

XML DOM

 207

Parameter Description

name It holds the name of the attribute to retrieve.

This method returns the updated value of the attribute.

Example

node.xml contents are as below:

<?xml version = "1.0"?>

<Company>

 <Employee category = "Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category = "Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category = "Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the setAttribute method:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

XML DOM

 208

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 for(i = 0;i < x.length;i++)

 {

 x.item(i).setAttribute("category","HR");

 }

 document.write("Values of all attribute after using setattribute method: ");

 for (i = 0;i < x.length;i++)

 {

 document.write(x[i].getAttribute('category'));

 document.write("
");

 }

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_setAttribute.html on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

XML DOM

 209

Values of all attribute after using setattribute method:

HR

HR

HR

Element Object Method - setAttributeNS

Method setAttributeNS adds a new attribute. If an attribute with the same local name and

the namespace URI is already present on the element, its prefix is changed to be the prefix

part of the qualifiedName, and its value is changed to be the value parameter.

Syntax

Following is the syntax for the usage of the setAttributeNS method.

elementObj.setAttributeNS(namespace,name,value)

Parameter Description

namespace Is a string specifying the namespace of the attribute.

name Is a string identifying the attribute to be set.

value Is the desired string value of the new attribute.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

XML DOM

 210

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

[[[[

Following example demonstrates the usage of the setAttributeNS method:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 x = xmlDoc.getElementsByTagName('FirstName')[0];

 ns="http://www.tutorials.com/technical/";

 document.write("Before using setattributeNS method: ");

 document.write(x.getAttributeNS(ns,"lang"));

 x.setAttributeNS(ns,"lang","DE");

 document.write("
After using setattributeNS method: ");

 document.write(x.getAttributeNS(ns,"lang"));

 </script>

 </body>

XML DOM

 211

</html>

Execution

Save this file as elementattribute_setAttributeNS.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

Before using setattributeNS method: en

After using setattributeNS method: DE

[[[

Element Object method - setAttributeNode

The setAttributeNode method sets a new attribute node to the existing element.

Syntax

Following is the syntax for the usage of the setAttributeNode method.

elementObj.setAttributeNode(newAttr)

Parameter Description

newAttr A new attribute node is added in the attribute list.

This method adds a new attribute node.

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category = "Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category = "Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

XML DOM

 212

 </Employee>

 <Employee category = "Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the setAttributeNode method:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.createAttribute("City");

 x.nodeValue = "fourth";

 y = xmlDoc.getElementsByTagName("Email");

 y[0].setAttributeNode(x);

XML DOM

 213

 document.write("City attribute is been set at the place: ");

 document.write(y[0].getAttribute("City"));

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_setAttributeNode.html on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

Display all the attribute nodes

category = technical

category = non-technical

category = Management

[[[[[

Element Object Method - setAttributeNodeNS

Method setAttributeNodeNS adds a new attribute. If an attribute with that local name and

that namespace URI is already present in the element, it is replaced by the new one.

Syntax

Following is the syntax for the usage of the setAttributeNodeNS method.

elementObj.setAttributeNodeNS(newAttr)

Parameter Description

newAttr The Attr node to add to the attribute list.

It returns a replaced Attr node.

Example

node_ns.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee xmlns:e="http://www.tutorials.com/technical/"
category="technical">

 <e:FirstName e:lang="en">Tanmay</e:FirstName>

XML DOM

 214

 <e:LastName>Patil</e:LastName>

 <e:ContactNo>1234567890</e:ContactNo>

 <e:Email>tanmaypatil@xyz.com</e:Email>

 </Employee>

 <Employee xmlns:n="http://www.tutorials.com/non-technical/" category="non-
technical">

 <n:FirstName n:lang="en">Taniya</n:FirstName>

 <n:LastName>Mishra</n:LastName>

 <n:ContactNo>1234667898</n:ContactNo>

 <n:Email>taniyamishra@xyz.com</n:Email>

 </Employee>

</Company>

Following example demonstrates the usage of the setAttributeNodeNS method:

<!DOCTYPE html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node_ns.xml");

 x1 = xmlDoc.getElementsByTagName('FirstName')[0];

 x2 = xmlDoc.getElementsByTagName('FirstName')[1];

XML DOM

 215

 ns="http://www.tutorials.com/technical/";

 var nsattr = x1.getAttributeNodeNS(ns, "lang");

 x2.setAttributeNodeNS(nsattr.cloneNode(true));

 document.write(x2.attributes[1].value); // returns: 'en'

 </script>

 </body>

</html>

Execution

Save this file as elementattribute_setAttributeNodeNS.htm on the server path (this file

and node_ns.xml should be on the same path in your server). We will get the output as

shown below:

en

XML DOM

 216

Attr interface represents an attribute in an Element object. Typically, the allowable values

for the attribute are defined in a schema associated with the document. Attr objects are

not considered as part of the document tree since they are not actually child nodes of the

element they describe. Thus for the child

nodes parentNode, previousSibling and nextSibling the attribute value is null.

Attributes

The following table lists the attributes of Attribute object:

Attribute Type Description

name DOMString This gives the name of the attribute.

specified boolean
It is a boolean value which returns true if the attribute

value exists in the document.

value DOMString Returns the value of the attribute.

ownerElement Element
It gives the node to which attribute is associated or null

if attribute is not in use.

isId boolean

It returns whether the attribute is known to be of type

ID (i.e. to contain an identifier for its owner element) or

not.

Attribute Object Attribute - name

The attribute name represents the name of the attribute.

Syntax

Following is the syntax for the usage of the name attribute.

attrObject.name

27. XML DOM — Attribute Object

XML DOM

 217

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

XML DOM

 218

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("Name of the attribute is : ");

 document.write(x.item(0).attributes[0].name);

 </script>

 </body>

</html>

Execution

Save this file as domattribute_name.html on the server path (this file and node.xml should

be on the same path in your server). We will get the output as shown below:

Name of the attribute is : category

Attribute Object Attribute - specified

The attribute specified is a boolean value which returns true if the attribute value exists in

the document.

Syntax

Following is the syntax for the usage of the specified attribute.

attrObject.specified

XML DOM

 219

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

XML DOM

 220

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("True if attribute is present else false : ");

 document.write(x.item(0).attributes[0].specified);

 </script>

 </body>

</html>

Execution

Save this file as domattribute_specified.html on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

True if attribute is present else false : true

Attribute Object Attribute - value

The attribute value returns the value of the attribute.

Syntax

Following is the syntax for the usage of the value attribute.

attrObject.value

XML DOM

 221

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

XML DOM

 222

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("Value of attribute is : ");

 document.write(x.item(0).attributes[0].value);

 </script>

 </body>

</html>

Execution

Save this file as domattribute_value.html on the server path (this file and node.xml should

be on the same path in your server). We will get the output as shown below:

Value of attribute is : Technical

Attribute Object Attribute - ownerElement

The attribute ownerElement gives the node to which attribute is associated or null if the

attribute is not in use.

Syntax

Following is the syntax for the usage of the value attribute.

attrObject.ownerElement

XML DOM

 223

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

XML DOM

 224

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("Owner is : ");

 document.write(x.item(0).attributes[0].ownerElement);

 document.write("
");

 document.write("Owner Name of attribute node is : ");

 document.write(x.item(0).attributes[0].ownerElement.nodeName);

 </script>

 </body>

</html>

Execution

Save this file as domattribute_ownerelement.html on the server path (this file and

node.xml should be on the same path in your server). We will get the output as shown

below:

Owner is : [object Element]

Owner Name of attribute node is : Employee

XML DOM

 225

Attribute Object Attribute - isId

The attribute isId returns whether the attribute is known to be of type ID (i.e., to contain

an identifier for its owner element) or not.

Syntax

Following is the syntax for the usage of the specified attribute.

attrObject.isId

Example

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<!DOCTYPE html>

<html>

 <head>

 <script>

XML DOM

 226

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

 </head>

 <body>

 <script>

 xmlDoc = loadXMLDoc("/dom/node.xml");

 x = xmlDoc.getElementsByTagName('Employee');

 document.write("Specifies if attribute have the ID specified for its
owner element or not : ");

 document.write("
");

 document.write(x.item(0).attributes[0].isId);

 </script>

 </body>

</html>

Execution

Save this file as domattribute_specified.html on the server path (this file and node.xml

should be on the same path in your server). We will get the output as shown below:

Specifies if attribute have the ID specified for its owner element or not :
undefined

XML DOM

 227

In this chapter, we will study about the XML DOM CDATASection Object. The text present

within an XML document is parsed or unparsed depending on what it is declared. If the

text is declared as Parse Character Data (PCDATA), it is parsed by the parser to convert

an XML document into an XML DOM Object. On the other hand, if the text is declared as

the unparsed Character Data (CDATA) the text within is not parsed by the XML parser.

These are not considered as the markup and will not expand the entities.

The purpose of using the CDATASection object is to escape the blocks of text containing

characters that would otherwise be regarded as markup. "]]>", this is the only delimiter

recognized in a CDATA section that ends the CDATA section.

The CharacterData.data attribute holds the text that is contained by the CDATA section.

This interface inherits the CharatcterData interface through the Textinterface.

There are no methods and attributes defined for the CDATASection object. It only directly

implements the Text interface.

28. XML DOM — CDATASection Object

XML DOM

 228

In this chapter, we will study about the Comment object. Comments are added as notes

or the lines for understanding the purpose of an XML code. Comments can be used to

include related links, information and terms. These may appear anywhere in the XML code.

The comment interface inherits the CharacterData interface representing the content of

the comment.

Syntax

XML comment has the following syntax:

 <!-------Your comment----->

A comment starts with <!-- and ends with -->. You can add textual notes as comments

between the characters. You must not nest one comment inside the other.

There are no methods and attributes defined for the Comment object. It inherits those of

its parent, CharacterData, and indirectly those of Node.

29. XML DOM — Comment Object

XML DOM

 229

XMLHttpRequest object establishes a medium between a web page's client-side and

server-side that can be used by the many scripting languages like JavaScript, JScript,

VBScript and other web browser to transfer and manipulate the XML data.

With the XMLHttpRequest object it is possible to update the part of a web page without

reloading the whole page, request and receive the data from a server after the page has

been loaded and send the data to the server.

Syntax

An XMLHttpRequest object can be instatiated as follows:

xmlhttp = new XMLHttpRequest();

To handle all browsers, including IE5 and IE6, check if the browser supports the

XMLHttpRequest object as below:

if(window.XMLHttpRequest) // for Firefox, IE7+, Opera, Safari, ...

{

 xmlHttp = new XMLHttpRequest();

}

else if(window.ActiveXObject) // for Internet Explorer 5 or 6

{

 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

}

Examples to load an XML file using the XMLHttpRequest object can be referredhere.
[[[[[[

Methods

The following table lists the methods of the XMLHttpRequest object:

Methods Description

abort() Terminates the current request made.

getAllResponseHeaders()

Returns all the response headers as a

string, or null if no response has been

received.

getResponseHeader() Returns the string containing the text of

the specified header, or null if either the

30. XML DOM — XMLHttpRequest Object

XML DOM

 230

response has not yet been received or the

header doesn't exist in the response.

open(method,url,async,uname,pswd)

It is used in conjugation with the Send

method to send the request to the server.

The Open method specifies the following

parameters:

 method: specifies the type of request i.e.

Get or Post.

 url: it is the location of the file.

 async: indicates how the request should

be handled. It is boolean value. where,

o 'true' means the request is processed

asynchronously without waiting for a Http

response.

o 'false' means the request is processed

synchronously after receiving the Http

response.

 uname: is the username.

 pswd: is the password.

send(string)
It is used to send the request working in

conjugation with the Open method.

setRequestHeader()
Header contains the label/value pair to

which the request is sent.

Attributes

The following table lists the attributes of the XMLHttpRequest object:

Attribute Description

onreadystatechange
It is an event based property which is set on at every state

change.

readyState

This describes the present state of the XMLHttpRequest

object. There are five possible states of the readyState

property:

 readyState=0 : means request is yet to initialize.

 readyState=1 : request is set.

 readyState=2 : request is sent.

 readyState=3 : request is processing.

 readyState=4 : request is completed.

XML DOM

 231

responseText
This property is used when the response from the server is a

text file.

responseXML
This property is used when the response from the server is an

XML file.

status
Gives the status of the Http request object as a number. For

example, "404" or "200".

statusText
Gives the status of the Http request object as a string. For

example, "Not Found" or "OK".

[[

Examples

node.xml contents are as below:

<?xml version="1.0"?>

<Company>

 <Employee category="Technical">

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

 <Employee category="Non-Technical">

 <FirstName>Taniya</FirstName>

 <LastName>Mishra</LastName>

 <ContactNo>1234667898</ContactNo>

 <Email>taniyamishra@xyz.com</Email>

 </Employee>

 <Employee category="Management">

 <FirstName>Tanisha</FirstName>

 <LastName>Sharma</LastName>

 <ContactNo>1234562350</ContactNo>

 <Email>tanishasharma@xyz.com</Email>

 </Employee>

</Company>

XML DOM

 232

Retrieve specific information of a resource file

Following example demonstrates how to retrive specific information of a resource file using

the method getResponseHeader() and the property readState.

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="content-type" content="text/html; charset=iso-8859-2"
/>

 <script>

 function loadXMLDoc()

 {

 var xmlHttp = null;

 if(window.XMLHttpRequest) // for Firefox, IE7+, Opera, Safari,
...

 {

 xmlHttp = new XMLHttpRequest();

 }

 else if(window.ActiveXObject) // for Internet Explorer 5 or 6

 {

 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 return xmlHttp;

 }

 function makerequest(serverPage, myDiv)

 {

 var request = loadXMLDoc();

 request.open("GET", serverPage);

 request.send(null);

 request.onreadystatechange = function()

 {

 if (request.readyState == 4)

 {

 document.getElementById(myDiv).innerHTML =
request.getResponseHeader("Content-length");

 }

 }

XML DOM

 233

 }

 </script>

 </head>

 <body>

 <button type="button" onclick="makerequest('/dom/node.xml', 'ID')">Click
me to get the specific ResponseHeader</button>

 <div id="ID">Specific header information is returned.</div>

 </body>

</html>

Execution

Save this file as elementattribute_removeAttributeNS.htm on the server path (this file and

node_ns.xml should be on the same path in your server). We will get the output as shown

below:

Before removing the attributeNS: en

After removing the attributeNS: null

Retrieve header infomation of a resource file

Following example demonstrates how to retrieve the header information of a resource file,

using the method getAllResponseHeaders() using the property readyState.

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="content-type" content="text/html; charset=iso-8859-2"
/>

 <script>

 function loadXMLDoc()

 {

 var xmlHttp = null;

 if(window.XMLHttpRequest) // for Firefox, IE7+, Opera, Safari,
...

 {

 xmlHttp = new XMLHttpRequest();

 }

 else if(window.ActiveXObject) // for Internet Explorer 5 or 6

 {

 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

XML DOM

 234

 }

 return xmlHttp;

 }

 function makerequest(serverPage, myDiv)

 {

 var request = loadXMLDoc();

 request.open("GET", serverPage);

 request.send(null);

 request.onreadystatechange = function()

 {

 if (request.readyState == 4)

 {

 document.getElementById(myDiv).innerHTML =
request.getAllResponseHeaders();

 }

 }

 }

 </script>

 </head>

 <body>

 <button type="button" onclick="makerequest('/dom/node.xml', 'ID')">Click
me to load the AllResponseHeaders</button>

 <div id="ID"></div>

 </body>

</html>

[[

Execution

Save this file as http_allheader.html on the server path (this file and node.xml should be

on the same path in your server). We will get the output as shown below (depends on the

browser):

Date: Sat, 27 Sep 2014 07:48:07 GMT Server: Apache Last-Modified: Wed, 03 Sep
2014 06:35:30 GMT Etag: "464bf9-2af-50223713b8a60" Accept-Ranges: bytes Vary:
Accept-Encoding,User-Agent Content-Encoding: gzip Content-Length: 256 Content-
Type: text/xml

XML DOM

 235

The DOMException represents an abnormal event happening when a method or a property

is used.

Properties

Below table lists the properties of the DOMException object

Property Description

name Returns a DOMString that contains one of the string associated with an error

constant (as seen the table below).

[

Error Types

Type Description

IndexSizeError

The index is not in the allowed range. For example,

this can be thrown by the Range object. (Legacy code

value: 1 and legacy constant name:

INDEX_SIZE_ERR)

HierarchyRequestError

The node tree hierarchy is not correct. (Legacy code

value: 3 and legacy constant name:

HIERARCHY_REQUEST_ERR)

WrongDocumentError

The object is in the wrong document. (Legacy code

value: 4 and legacy constant name:

WRONG_DOCUMENT_ERR)

InvalidCharacterError

The string contains invalid characters. (Legacy code

value: 5 and legacy constant name:

INVALID_CHARACTER_ERR)

NoModificationAllowedError

The object can not be modified. (Legacy code value: 7

and legacy constant name:

NO_MODIFICATION_ALLOWED_ERR)

NotFoundError
The object cannot be found here. (Legacy code value:

8 and legacy constant name: NOT_FOUND_ERR)

31. XML DOM — DOMException Object

XML DOM

 236

NotSupportedError
The operation is not supported. (Legacy code value: 9

and legacy constant name: NOT_SUPPORTED_ERR)

InvalidStateError
The object is in an invalid state. (Legacy code value:

11 and legacy constant name: INVALID_STATE_ERR)

SyntaxError

The string did not match the expected pattern.

(Legacy code value: 12 and legacy constant name:

SYNTAX_ERR)

InvalidModificationError

The object cannot be modified in this way. (Legacy

code value: 13 and legacy constant name:

INVALID_MODIFICATION_ERR)

NamespaceError

The operation is not allowed by Namespaces in XML.

(Legacy code value: 14 and legacy constant name:

NAMESPACE_ERR)

InvalidAccessError

The object does not support the operation or

argument. (Legacy code value: 15 and legacy

constant name: INVALID_ACCESS_ERR)

TypeMismatchError

The type of the object does not match the expected

type. (Legacy code value: 17 and legacy constant

name: TYPE_MISMATCH_ERR) This value is

deprecated, the JavaScript TypeError exception is now

raised instead of a DOMException with this value.

SecurityError
The operation is insecure. (Legacy code value: 18 and

legacy constant name: SECURITY_ERR)

NetworkError
A network error occurred. (Legacy code value: 19 and

legacy constant name: NETWORK_ERR)

AbortError
The operation was aborted. (Legacy code value: 20

and legacy constant name: ABORT_ERR)

URLMismatchError

The given URL does not match another URL. (Legacy

code value: 21 and legacy constant name:

URL_MISMATCH_ERR)

QuotaExceededError
The quota has been exceeded. (Legacy code value: 22

and legacy constant name: QUOTA_EXCEEDED_ERR)

XML DOM

 237

TimeoutError
The operation timed out. (Legacy code value: 23 and

legacy constant name: TIMEOUT_ERR)

InvalidNodeTypeError

The node is incorrect or has an incorrect ancestor for

this operation. (Legacy code value: 24 and legacy

constant name: INVALID_NODE_TYPE_ERR)

DataCloneError
The object cannot be cloned. (Legacy code value: 25

and legacy constant name: DATA_CLONE_ERR)

EncodingError

The encoding operation, being an encoding or a

decoding one, failed (No legacy code value and

constant name).

NotReadableError
The input/output read operation failed (No legacy code

value and constant name).

[[[[[

Example

Following example demonstrates how using a not well-formed XML document causes a

DOMException.

error.xml contents are as below:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<Company id="companyid">

 <Employee category="Technical" id="firstelement" type="text/html">

 <FirstName>Tanmay</first>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 </Employee>

</Company>

Following example demonstrates the usage of the name attribute:

<html>

<head>

 <script>

 function loadXMLDoc(filename)

 {

 if (window.XMLHttpRequest)

 {

XML DOM

 238

 xhttp = new XMLHttpRequest();

 }

 else // code for IE5 and IE6

 {

 xhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xhttp.open("GET",filename,false);

 xhttp.send();

 return xhttp.responseXML;

 }

 </script>

</head>

<body>

 <script>

 try{

 xmlDoc = loadXMLDoc("/dom/error.xml");

 var node = xmlDoc.getElementsByTagName("to").item(0);

 var refnode = node.nextSibling;

 var newnode = xmlDoc.createTextNode('That is why you fail.');

 node.insertBefore(newnode, refnode);

 }

 catch(err){

 document.write(err.name);

 }

 </script>

</body>

</html>

Execution

Save this file as domexcption_name.html on the server path (this file and error.xml should

be on the same path in your server). We will get the output as shown below:

TypeError

