About the Tutorial

Digital communication is the process of devices communicating information digitally. This tutorial helps the readers to get a good idea on how the signals are digitized and why digitization is needed.

By the completion of this tutorial, the reader will be able to understand the conceptual details involved in digital communication.

Audience

This tutorial is prepared for beginners who are interested in the basics of digital communications and who aspire to acquire knowledge regarding digital communication systems.

Prerequisites

A basic idea regarding the initial concepts of communication is enough to go through this tutorial. It will definitely help if you use our tutorial Signals and Systems as a reference. A basic knowledge of the terms involved in Electronics and Communications would be an added advantage.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute, or republish any contents or a part of the contents of this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness, or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at contact@tutorialspoint.com
Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites .. i

Table of Contents ... ii

1. DC – ANALOG TO DIGITAL ... 1
 The Necessity of Digitization ... 1
 Advantages of Digital Communication ... 1
 Elements of Digital Communication .. 2

2. DC – PULSE CODE MODULATION ... 5
 Pulse Code Modulation .. 5
 Basic Elements of PCM ... 5

3. DC – SAMPLING ... 8
 Sampling Rate ... 8
 Nyquist Rate ... 9
 Sampling Theorem .. 9
 Aliasing ... 12
 Scope of Fourier Transform ... 12

4. DC – QUANTIZATION .. 13
 Quantizing an Analog Signal ... 13
 Types of Quantization .. 14
 Quantization Error .. 15
 Companding in PCM ... 16
5. DC – DIFFERENTIAL PCM .. 17
 DPCM Transmitter .. 17
 DPCM Receiver ... 18

6. DC – DELTA MODULATION .. 19
 Delta Modulation ... 19
 Delta Modulator .. 20
 Delta Demodulator .. 21
 Adaptive Delta Modulation (ADM) ... 22

7. DC – TECHNIQUES .. 24
 Linear Predictive Coding .. 24
 Multiplexing .. 24
 Types of Multiplexers .. 25
 Analog Multiplexing .. 26
 Digital Multiplexing .. 26
 Regenerative Repeater ... 27

8. DC – LINE CODES ... 29
 Properties of Line Coding .. 29
 Unipolar Signaling .. 29
 Polar Signaling .. 31
 Bipolar Signaling .. 33
 Power Spectral Density .. 35

9. DC – DATA ENCODING TECHNIQUES ... 37
 Encoding Techniques .. 37
 Non Return to Zero (NRZ) ... 37
 Bi-phase Encoding ... 38
Block Coding ... 39

10. DC – PULSE SHAPING ... 41
 Inter Symbol Interference .. 41
 Correlative Coding ... 42
 Eye Pattern .. 42
 Equalization .. 43
 Error Probability & Figure-of-merit ... 44

11. DC – DIGITAL MODULATION TECHNIQUES .. 45

12. DC – AMPLITUDE SHIFT KEYING .. 46
 ASK Modulator .. 46
 ASK Demodulator ... 47

13. DC – FREQUENCY SHIFT KEYING ... 49
 FSK Modulator .. 49
 FSK Demodulator ... 50

14. DC – PHASE SHIFT KEYING .. 52
 BPSK Modulator ... 52
 BPSK Demodulator .. 53

15. DC – QUADRATURE PHASE SHIFT KEYING .. 55
 QPSK Modulator ... 55
 QPSK Demodulator .. 56

16. DC – DIFFERENTIAL PHASE SHIFT KEYING .. 57
 DPSK Modulator ... 57
 DPSK Demodulator .. 58
17. DC – M-ARY ENCODING ... 59
M-ary Equation.. 59
Types of M-ary Techniques.. 59

18. DC – INFORMATION THEORY ... 62
Entropy... 62
Mutual Information.. 62
Properties of Mutual information.. 63

19. DC – SOURCE CODING THEOREM ... 65

20. DC – CHANNEL CODING THEOREM ... 67
Channel Coding... 67

21. DC – ERROR CONTROL CODING ... 68
Linear Block Codes... 68
Convolution Codes ... 69
Hamming Codes .. 69
BCH Codes .. 70
Cyclic Codes... 70

22. DC – SPREAD SPECTRUM MODULATION 71
Narrow-band and Spread-spectrum Signals.................................... 71
FHSS & DSSS / CDMA... 72
Comparison between FHSS and DSSS/CDMA................................. 73
Advantages of Spread Spectrum.. 73
The communication that occurs in our day-to-day life is in the form of signals. These signals, such as sound signals, generally, are analog in nature. When the communication needs to be established over a distance, then the analog signals are sent through wire, using different techniques for effective transmission.

The Necessity of Digitization

The conventional methods of communication used analog signals for long distance communications, which suffer from many losses such as distortion, interference, and other losses including security breach.

In order to overcome these problems, the signals are digitized using different techniques. The digitized signals allow the communication to be more clear and accurate without losses.

The following figure indicates the difference between analog and digital signals. The digital signals consist of 1s and 0s which indicate High and Low values respectively.

![Representation of Signals](image)

Advantages of Digital Communication

As the signals are digitized, there are many advantages of digital communication over analog communication, such as -

- The effect of distortion, noise, and interference is much less in digital signals as they are less affected.

- Digital circuits are more reliable.
Digital circuits are easy to design and cheaper than analog circuits.

The hardware implementation in digital circuits, is more flexible than analog.

The occurrence of cross-talk is very rare in digital communication.

The signal is un-altered as the pulse needs a high disturbance to alter its properties, which is very difficult.

Signal processing functions such as encryption and compression are employed in digital circuits to maintain the secrecy of the information.

The probability of error occurrence is reduced by employing error detecting and error correcting codes.

Spread spectrum technique is used to avoid signal jamming.

Combining digital signals using Time Division Multiplexing (TDM) is easier than combining analog signals using Frequency Division Multiplexing (FDM).

The configuring process of digital signals is easier than analog signals.

Digital signals can be saved and retrieved more conveniently than analog signals.

Many of the digital circuits have almost common encoding techniques and hence similar devices can be used for a number of purposes.

The capacity of the channel is effectively utilized by digital signals.

Elements of Digital Communication

The elements which form a digital communication system is represented by the following block diagram for the ease of understanding.
Following are the sections of the digital communication system.

Source
The source can be an analog signal. **Example**: A Sound signal

Input Transducer
This is a transducer which takes a physical input and converts it to an electrical signal (**Example**: microphone). This block also consists of an analog to digital converter where a digital signal is needed for further processes.

A digital signal is generally represented by a binary sequence.

Source Encoder
The source encoder compresses the data into **minimum number of bits**. This process helps in effective utilization of the bandwidth. It removes the redundant bits (unnecessary excess bits, i.e., zeroes).

Channel Encoder
The channel encoder, does the coding for error correction. During the transmission of the signal, due to the noise in the channel, the signal may get altered and hence to avoid this,
the channel encoder adds some redundant bits to the transmitted data. These are the error correcting bits.

Digital Modulator

The signal to be transmitted is modulated here by a carrier. The signal is also converted to analog from the digital sequence, in order to make it travel through the channel or medium.

Channel

The channel or a medium, allows the analog signal to transmit from the transmitter end to the receiver end.

Digital Demodulator

This is the first step at the receiver end. The received signal is demodulated as well as converted again from analog to digital. The signal gets reconstructed here.

Channel Decoder

The channel decoder, after detecting the sequence, does some error corrections. The distortions which might occur during the transmission, are corrected by adding some redundant bits. This addition of bits helps in the complete recovery of the original signal.

Source Decoder

The resultant signal is once again digitized by sampling and quantizing so that the pure digital output is obtained without the loss of information. The source decoder recreates the source output.

Output Transducer

This is the last block which converts the signal into the original physical form, which was at the input of the transmitter. It converts the electrical signal into physical output (**Example**: loud speaker).

Output Signal

This is the output which is produced after the whole process. **Example**: The sound signal received.

This unit has dealt with the introduction, the digitization of signals, the advantages and the elements of digital communications. In the coming chapters, we will learn about the concepts of Digital communications, in detail.
End of ebook preview
If you liked what you saw...
Buy it from our store @ https://store.tutorialspoint