DESIGN PATTERNS - PROTOTYPE PATTERN

Prototype pattern refers to creating duplicate object while keeping performance in mind. This type
of design pattern comes under creational pattern as this pattern provides one of the best ways to
create an object.

This pattern involves implementing a prototype interface which tells to create a clone of the
current object. This pattern is used when creation of object directly is costly. For example, an
objectis to be created after a costly database operation. We can cache the object, returns its
clone on next request and update the database as and when needed thus reducing database calls.

Implementation

We're going to create an abstract class Shape and concrete classes extending the Shape class. A
class ShapeCache is defined as a next step which stores shape objects in a Hashtable and returns
their clone when requested.

PrototypPatternDemo, our demo class will use ShapeCache class to get a Shape object.

Shape
-id = String
+type : String
+getType() : void
+getid() : String
+setld() : void
+clone(): Object

PrototypePatternDemo

+main(} : void

extends extends Hfask&
ShapeCache
tend
e clones | -shapeMap : HashMap
Circle Rectangle Square +getShape() : Shape
+loadCache(): void
type : 5iring -type : 5tring -type : 5iring

+getTypel) :void
+getld() : String
+setld() : void
+clone(): Object

+getTypel) :void
+getid() : String
+setld() : void

+clone(): Object

+getType() :vold
+getid() : String
+setid() : void
+clonel): Object

Step 1
Create an abstract class implementing Clonable interface.

Shape.java

public abstract class Shape implements Cloneable {

private String id;
protected String type;

abstract void draw();

public String getType(){
return type;

}

public String getId() {
return id;
¥


http://www.tutorialspoint.com/design_pattern/prototype_pattern.htm

public void setId(String id) {
this.id = id;
}

public Object clone() {
Object clone = null;

try {
clone = super.clone();

} catch (CloneNotSupportedException e) {
e.printStackTrace();

}
return clone;
}
}
Step 2

Create concrete classes extending the above class.

Rectangle.java

public class Rectangle extends Shape {

public Rectangle(){
type = "Rectangle";
}

@Override
public void draw() {

System.out.println("Inside Rectangle::draw() method.");
}

}
Square.java

public class Square extends Shape {

public Square(){
type = "Square';
}

@Override
public void draw() {

System.out.println("Inside Square::draw() method.");
}

}
Circle.java

public class Circle extends Shape {

public Circle(){
type = "Circle";
}

@Override
public void draw() {

System.out.println("Inside Circle::draw() method.");
}

}
Step 3



Create a class to get concrete classes from database and store them in a Hashtable.

ShapeCache.java

import java.util.Hashtable;
public class ShapeCache {
private static Hashtable<String, Shape> shapeMap = new Hashtable<String, Shape>();

public static Shape getShape(String shapeld) {
Shape cachedShape = shapeMap.get(shapeld);
return (Shape) cachedShape.clone();

}

// for each shape run database query and create shape
// shapeMap.put(shapeKey, shape);
// for example, we are adding three shapes

public static void loadCache() {
Circle circle = new Circle();
circle.setId("1");
shapeMap .put(circle.getId(),circle);

Square square = new Square();
square.setId("2");

shapeMap .put(square.getId(), square);
Rectangle rectangle = new Rectangle();

rectangle.setId("3");
shapeMap .put(rectangle.getId(), rectangle);

Step 4
PrototypePatternDemo uses ShapeCache class to get clones of shapes stored in a Hashtable.

PrototypePatternDemo.java

public class PrototypePatternDemo {
public static void main(String[] args) {
ShapeCache .1loadCache();

Shape clonedShape = (Shape) ShapeCache.getShape("1");

System.out.println("Shape : " + clonedShape.getType());
Shape clonedShape2 = (Shape) ShapeCache.getShape("2");
System.out.println("Shape : " + clonedShape2.getType());
Shape clonedShape3 = (Shape) ShapeCache.getShape("3");
System.out.println("Shape : " + clonedShape3.getType());
}
}
Step 5

Verify the output.

Shape : Circle
Shape : Square
Shape : Rectangle



