DESIGN PATTERNS - COMPOSITE PATTERN

Composite pattern is used where we need to treat a group of objects in similar way as a single
object. Composite pattern composes objects in term of a tree structure to represent part as well as
whole hierarchy. This type of design pattern comes under structural pattern as this pattern creates
a tree structure of group of objects.

This pattern creates a class that contains group of its own objects. This class provides ways to
modify its group of same objects.

We are demonstrating use of composite pattern via following example in which we will show
employees hierarchy of an organization.

Implementation

We have a class Employee which acts as composite pattern actor class. CompositePatternDemo,
our demo class will use Employee class to add department level hierarchy and print all employees.

CompositePatternDemo

+main() : void

asks
k. 4
Employee
Has list of

-name: String employees
-dept : String
-salary : int
-subordinates : List <Employee>

-Employee ()

+add() : void
+remove() : void
+getSubordinates: List
<Employee>
+toString() : String

Step 1
Create Employee class having list of Employee objects.
Employee.java

import java.util.ArraylList;
import java.util.List;

public class Employee {
private String name;
private String dept;
private int salary;
private List<Employee> subordinates;

// constructor
public Employee(String name,String dept, int sal) {

http://www.tutorialspoint.com/design_pattern/composite_pattern.htm

this.name
this.dept

= name;
= dept;

this.salary = sal;
subordinates = new ArrayList<Employee>();

}

public void add(Employee e) {
subordinates.add(e);

}

public void remove(Employee e) {
subordinates.remove(e);

}

public List<Employee> getSubordinates(){
return subordinates;

}

public String toString(){
return ("Employee :[Name : " + name + ", dept : " + dept + ", salary :"

salary+"]");

}
Step 2

Use the Employee class to create and print employee hierarchy.

CompositePatternDemo.java

public class CompositePatternDemo {
public static void main(String[] args) {

Employee
Employee
Employee

Employee
Employee

Employee
Employee

CEO = new Employee("John","CEQ", 30000);
headSales = new Employee("Robert", "Head Sales", 20000);
headMarketing = new Employee("Michel", "Head Marketing", 20000);

clerki
clerk2

= new Employee("Laura", "Marketing", 10000);

= new Employee("Bob", "Marketing", 10000);

new Employee("Richard",6 "Sales", 10000);
new Employee("Rob", "Sales", 10000);

salesExecutivel
salesExecutive?2

CEO.add(headSales);
CEO.add (headMarketing);

headSales.add(salesExecutivel);
headSales.add(salesExecutive2);

headMarketing.add(clerkl);
headMarketing.add(clerk2);

//print all employees of the organization
System.out.println(CEO);

for (Employee headEmployee : CEO.getSubordinates()) {
System.out.println(headEmployee);

for (Employee employee : headEmployee.getSubordinates()) {
System.out.println(employee);

+

Verify the output.

Employee
Employee
Employee
Employee
Employee
Employee
Employee

o N W s W s W W Wy |

Name
Name
Name
Name
Name
Name
Name

: John, dept
: Robert, dept :
: Richard, dep
: Rob, dept
: Michel, dept :
: Laura, dept
: Bob, dept :

Head Sal
t : Sales,

Head Mar
: Marketing,
Marketing,

: CEO, salary :30000]

es, salary :20000]
salary :10000]

: Sales, salary :10000]

keting, salary :20000]
salary :10000]
salary :10000]

