DESIGN PATTERNS - COMMAND PATTERN

Command pattern is a data driven design pattern and falls under behavioral pattern category. A
request is wrapped under an object as command and passed to invoker object. Invoker object
looks for the appropriate object which can handle this command and passes the command to the
corresponding object which executes the command.

Implementation

We have created an interface Order which is acting as a command. We have created a Stock class
which acts as a request. We have concrete command classes BuyStock and SellStock
implementing Order interface which will do actual command processing. A class Broker is created
which acts as an invoker object. It can take and place orders.

Broker object uses command pattern to identify which object will execute which command based
on the type of command. CommandPatternDemo, our demo class, will use Broker class to
demonstrate command pattern.

Stock CommandPatternDemo
-name :5iring uses
-guantity :int €
+main() :woid
+buy() : veid
+sell(} ; void
uses
L
Broker
Order c<interfaces> -orders :List
uses
[F— +takeOrder]) : void
+exacute() : void +placeOrdersl{) : void
implements T implements
BuyStock Sellstock
-stock : Stock -stock : Stock
+BuyStock() +5ell5tock])
+execute) +axecute()

Step 1
Create a command interface.

Order.java

public interface Order {
void execute();
}

Step 2
Create a request class.

Stock.java

http://www.tutorialspoint.com/design_pattern/command_pattern.htm

public class Stock {

private String name = "ABC";
private int quantity = 10;

public void buy(){
System.out.println("Stock [Name: "+name+",

Quantity: " + quantity +"] bought");

b
public void sell(){

System.out.println("Stock [Name: "+name+",
Quantity: " + quantity +"] sold");
}

Step 3
Create concrete classes implementing the Order interface.

BuyStock.java

public class BuyStock implements Order {
private Stock abcStock;

public BuyStock(Stock abcStock){
this.abcStock = abcStock;
}

public void execute() {
abcStock.buy();
b

}
SellStock.java

public class SellStock implements Order {
private Stock abcStock;

public SellStock(Stock abcStock){
this.abcStock = abcStock;

}

public void execute() {
abcStock.sell();

}
3

Step 4
Create command invoker class.

Broker.java

import java.util.Arraylist;
import java.util.List;

public class Broker {
private List<Order> orderList = new ArraylList<Order>();

public void takeOrder(Order order){
orderlList.add(order);

}

public void placeOrders(){

for (Order order : orderList) {
order .execute();

}

orderList.clear();

}
Step 5

Use the Broker class to take and execute commands.

CommandPatternDemo.java

public class CommandPatternDemo {
public static void main(String[] args) {
Stock abcStock = new Stock();

BuyStock buyStockOrder = new BuyStock(abcStock);
SellStock sellStockOrder = new SellStock(abcStock);

Broker broker = new Broker();
broker .takeOrder (buyStockOrder);
broker .takeOrder (sellStockOrder);

broker .placeOrders();
}
Step 6
Verify the output.

Stock [Name: ABC, Quantity: 10] bought
Stock [Name: ABC, Quantity: 10] sold

