adcC

tutorialspoint

S I MPLY EASY LEARNINILG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

DC.js

About the Tutonial

DC.js is a charting library built on top of D3.js and works natively with crossfilter, which
is another popular JavaScript library used to explore millions of records in a short period
on the client side. DC.js is a JavaScript library used to make interactive dashboards in
JavaScript. This tutorial will give you a complete knowledge on the DC.js framework.

This is an introductory tutorial, which covers the basics of DC.js and explains how to deal
with its various modules and sub-modules.

Audience

This tutorial is prepared for professionals who are aspiring to make a career in online data
visualization. This tutorial is intended to make you comfortable in getting started with the
DC.js framework and its various components.

Prerequisites

Before proceeding with the various types of concepts given in this tutorial, it is being
assumed that the readers are already aware about what a Framework is.

In addition to this, it will be very helpful, if the readers have a sound knowledge on HTML,
CSS, JavaScript and D3.js.

Copyright and Disclaimer

© Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

EIMPLYEAEYLEARMNING

|\' tutorials

mailto:contact@tutorialspoint.com

DC.js

Table of Contents

10.

ADOUL TNE TULOITAL c.eviiiiieeiee ettt ettt e s bt e e bt e e s bee e bt e e s b beesateesabeesateesabeesaseesabaesaseenas i
F Y0 Lo [T o ol OO TSRS URRTPTRTSRRPRIN i
=T =To LT =L P PP PPPPPPPPPPPRPPPPRE i
(0fo] 0}V g T4 a1 A= Yo Yo I B 1ol - 10 =Y o USRI i
BRI o (o] o] o =Y o} £ PRSP PRTUPN i
0T O T 01 o o 1FT ot T 1
WWNAE BS DICLJSP ettt et ettt et et ettt e bt ettt e bt bt e e bt e bt e s bt e e b e e e bt e e abee e bt e e seeebeeesabeeeaeeesabeenneeesabeeenbeesabeeeaneenn 1
WHhY DO WE NEEA DC.jS? .ueeiiiiiiieieiiie e ciiee e ettt e eette e e sttee e et teeesetaeeesaseeeasstaeaeasssasesasseaeassaeesanssssesassessasssseennses 1
DO R L =F | (U] =TT PP P PRSPPI PON 1
[T 3 = =T T RN 2
[0 TOB LIl 113 -1 - 14 1 3
[T o 1] =11 = 1o o TS 3
DTG 3 =T 11 oY SO PO TP TSP PPPRUPROPPPRRTI 4
MWD BIOWSET ..veeeeeieeeiieeeeeeeee ettt et e e e ee e ttteeeeeeeeesttaraeeeeeesesasbaasaeeeeaaasstaaaaaseeesaassssaeasaeesasssssaseaeesesssntraneeeesenen 4
ATV L] o BT V] (PRSPPI 4
DIC.jS = CONCEPLS.cuueuiiiirrrrnneiisessiirrnsssssssssirrssssssssssssrmssnssssss 5
Hypertext Markup LangUAZE (HTIMIL) ...c..uviiieiiiie ettt ettt e ettt e e et e e s et e e e s ata e e e sabaeeeestaeeensaaeesnsreeaans 5
Document ObJject MOl (DOM)uuiiiiiiieeeiee ettt e st e e e tte e e e ette e e e sata e e e ettaeeseabaeeesabaeeeessaeeeansaaeessseaaans 5
(07 Y or= Lo [T g P AV TSI =T d (O ISR 6
LY N ol o] SO PPPRPON 7
(60 0] o T] aT=T 0} £ PP PP PP PPNt 7
INtroduction t0 CroSSfilter.......uiiiiiiiiiiiiiiiiiiiiitirrr s ss s s ssass e s s s s e e 8
(2 T (ol 0o o= o} £SO P PP OPPRPOPPRN 8
INtrOdUCEION 0 D3.jS...uuuuuueeeernnrnissses 10
Y= (=T AT o T TP PSPPSR PPPOPPROUP 10
[DE | = o T o BT PSP P PP PUPT PRI 10
1)V C T USSR SPTRPSROTR 10
L1140 o DU OO PUPTPU PRI 11
FAN o110 =14 o] o ST PP PPPTPUPTTN 11
D T Y =] FO PRSPPI 11
DIC.jS = IMIIXINS eeveruniiiiiirrennnisisnniimenssssssniimmessssssssssssmsssnes 13
DC.jS — BASEIMIIXIN ...uuuuereeennnnnnnnnnss 14
(CT=Y L= = 1@ T T A0 o] 4 o] o T3PS 14
(D) = 1 O] 4o o -3 PP PPPP PR 15
1LY GO 4 o] o PSRRI 17
V=T o1 @ o1 o 3OS 20
[0 g Yo L= g T = @1 4 o] o SRR 21
BT TR Lo] a T O] o) {04 3N 21
[0 T L oF- Vo1 1Y/ {1 U 22
DC.JS — COIOTIVIIXIN ...eueeeeennnnnnnnnnnnsnsnsssssnsssnnns 23
DC.jS = MArGINIVIIXIN ..oiiiiieunniiiiiiiiiennmiiiiiiiimesssssisiiimesssssssssstissnes 25

ii

|\' tutorials

EIMPLYEAEYLEARMNING

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

DC.js — coOrdinat@GridIVIIXINccceeeerrriirrsssnses 26
oY AUE o (@ Lo T (N T U o[o S 27
(ol aF: Tz ToTe 1Y €1l LT To VA) SRS RSNE 27
Lol [To] = To [o [TaY=d W o= e) ISR 27
L T o) D) SRS SRUR 27
(oY R W = TaT= 1<) | ISR 28
F={ (oo] 4 PR 28
(1Y@ e 113 - L) S 28
e YoYU Y=V o ToT 0 b1 o1 I=Y 7o Yo oo}) ISR 28
[T=d<T® o= T =T Y= =]) S 28
oY 1T () TS 28
DL Y = PN 28
D (1 AV T Y TP 29
DU T (o TU TN IS 29
0T O T o - 0l T T o S 30
[N @l T o Y L= d o Voo E O U UPRRRPR 30
B 1A T TN O - T TP OTRPP 33
[0 T o L3l T3 Y= 01 -1 o 38
(KT a 1ol @ o F= T 1Y/ (=1 o Vo o PP OTPTOPP 38
DIraW @ LINE CRart .ooevieiiiicieecieese ettt st st e e st s e e st esaae e s bt e e bt e e sate e aaeesateebteessbeensaeesabeenseeesaseeses 39
[0 TOR L3l 7= T 0 - T 44
2 T @ o =Y V(<34 o Yo Lo [P UPRRRRPR 44
B N A N T T @ o T-1 o RSP UPRRRRR 45
DC.jS — COMPOSItE CRArt......ccciiiriiiirisrsss 50
ComMPOSite Chart IMELROOScoeiieiieee ettt sttt e st e st e sabeesat e e sabeesaneesabeesaneens 50
Draw @ COMPOSITE CRalt.....ccocciiieiiiiee ettt e et e e e st e e e et e e e stbeeeesataeeeeasteeesasbeeaastaeeeansaeeessseeaans 52
[0 T Y =T g [=L @ 1 - T o SO 57
SErieS Chart IMEENOMSceiiiiiieee ettt et e e e st e s st e e e sbb e e e e aabeeessasteeesbbeeeenabaeesnnnee 57
DraW @ SEIIES Charteeieiiiiieeiee ettt ettt e e s bt e e s bttt e sabbeeeesabeeessabteeesabbeeeesbeeesenseeeesabbeeenas 58
[0 T LY or= 1 4 =Tl (o1 SO TTTO 64
Yo 1 =] gl ol oY |V =1 d o o o £ SSRTSRRNE 64
BT T I or= Y o =1 gl = o P 65
DC.jS — BUDDIE Chartceeeeeeiiiiissiisissns 71
(2107 o] o] T @ o F= Yol 1Y =1 d o To Yo £3 USRS 71
Draw @ BUDDIE Chart.....o. ettt ettt e e et e e s sttt e e sba e e e e sabe e e ssabeeeesabeeeeeas 72
[0 T Ll o [T Y 3 | - T o TSP 79
DL NV I o =T 1o g - o SO ON 80
DC.jS = Data COUNTcoiiieeieeeciieiiiteieenccessereenanssseeeseeeernnsssssssseeennnssssssssesesnnssssssssssesnnnsssssssseesnnnnsssssssnsennnnns 86
Data COUNT IMEBENOMAS ..ceiiiiiiieiie ettt et e s sttt e e st e e e sa bt e e s s btee e sabbeeesasbaeessasaeeesabeeeenas 86
[DTONTIEl 0 1 ¢ T - 1« 92
Data Table IMELNOTSveieieiiie ettt ettt e st e st e e st e e bt e e sabeesaeeesabeesbeeesaeeenanas 92
(DN T I o] [=T [4T o LS 93

iii

|\' tutorials

EIMPLYEAEYLEARMNING

b I o Lol T3l o T 1 2= 1 € 4 1o N 101
Data Grid METNOTS ...coveeiiieiieeiieeeeee ettt ettt s sbe e b et e e saresmnesbeesbee et e et enneens 101
(DN [CT o I =Y o Yo LSRR 102

B T 0 o Tl I = T N 109
LEEENT METNOMS ...ttt ettt e s bt e bt e s bt e e bt e e s ab e e be e e sateeene e e sabeesaseesabeesaneenn 109

24. DC.js — Dashboard Working EXampleceeiiiiiiiiiieeieiiiiiiiiineeeiiiiinsseeesssnssssssessssssssssssssessssssssssnes 111
W OTKING EXAMIPI. ...ttt ettt e st e st e et esa bt e e bt e sa b e e e bt e sabeesaseesabeeenbeesabeesneenane 111

iv

|\' tutorials

EIMPLYEAEYLEARMNING

1.DC.JS—INTRODUCTION

DC.js is an excellent JavaScript library for data analysis in the browser, mobile devices and
ultimately helps in creating data visualization. Data visualization is the presentation of data
in a pictorial or graphical format. The primary goal of data visualization is to communicate
information clearly and efficiently via statistical graphics, plots and information graphics. Data
visualizations can be developed and integrated in regular web and even mobile applications
using different JavaScript frameworks.

Whatis DC js?

DC.js is a charting library for exploring large multi-dimensional datasets. It relies on the
D3.js engine to render charts in a CSS-friendly SVG format. It allows complex data
visualization to be rendered and has a designed dashboard having Bar Charts, Scatter Plots,
Heat Maps, etc. DC.js is built to work with Crossfilter for data manipulation. DC.js enables
a single (large) dataset to be visualized with many interconnected charts with an advanced
auto-filtering option.

Why Do We Need DC.js?

In general, data visualization is quite a complex process and carrying it out on the client side
requires extra skill. DC.js enables us to create almost any kind of complex data visualization
using a simpler programming model. It is an open source, extremely easy-to-pick-up
JavaScript library, which allows us to implement neat custom visualizations in a very short
time.

DC.js charts are data driven and very reactive. In addition, it delivers instant feedback to user
interaction using the Crossfilter Library.

DC.js Features

DC.js is one of the best data visualization framework and it can be used to generate simple
as well as complex visualizations. Some of the salient features are listed below:

Extremely flexible.

e FEasy to use.

e Fast rendering of the charts

e Supports large multi-dimensional datasets.

@ tutorialspoint

EIMPLYEASYLEARMNING

Open source JavaScript library.

Dc.js Benefits

DC.js

DC.js is an open source project and it requires lesser code when compared to others. It comes
with the following benefits:

In the next chapter, we will understand how to install D3.js on our system.

¢

Great data visualization.
Performs graphical filtering.

Fast creation of charts and dashboards.

Creation of highly interactive dashboards.

tutorials

EIMPLYEAEYLEARMNING

2.DC.JS—INSTALLATION

In this chapter, we will learn how to setup the DC.js development environment. Before we
start, we need the following components:

e DC.js library
¢ Editor
e Web browser

e Web server

Let us go through the steps one by one in detail.

DC.js Installation

DC installation is very easy to set up. Follow the below steps to install DC on your machine.

Download DC Library

DCis an open-source library; use the link https://github.com/dc-js/dc.js/releases to
download the file.

Download here

Download the latest version of the DC file. (As of now, the latest version is 2.0.2.). After the
download is completed, unzip the DC folder and paste it to your project's root folder or any
other folder, where you want to keep all your library files.

The sample HTML page is as shown below.

<!DOCTYPE html>
<html lang="en">
<head>
<script src="js/d3.js"></script>
<script src="js/crossfilter.js"></script>
<script src="js/dc.js"></script>
</head>

<body>

. tutorialspoint

EIMPLYEASYLEARMNING

https://github.com/dc-js/dc.js/releases
https://github.com/dc-js/dc.js/releases

DC.js

<script>
// write your dc code here..
</script>
</body>
</html>

DC is a JavaScript code, so we have to write all the DC codes within the “script” tag. We may
need to manipulate the existing DOM elements, hence it is advisable to write the DC code just
before the end of the “body” tag.

DC.js Editor

We will need an editor to start writing the code. There are some great IDEs (Integrated
Development Environment) with support for JavaScript such as -

e Visual Studio Code
e WebStorm
e Eclipse
e SublimeText
These IDEs provide intelligent code completion as well as support some of the modern

JavaScript frameworks. If we do not have any fancy IDE, we can always use a basic editor
such as Notepad, VI, etc.

Web Browser

DC.js works on all browsers except IE8 and lower.

Web Server

Most browsers serve local HTML files directly from the local file system. However, there are
certain restrictions when it comes to loading external data files. In the subsequent chapters
of this tutorial, we will be loading data from external files such as CSV and JSON. Therefore,
it will be easier for us, if we set up the web server right from the beginning.

We can use any web server, which we are comfortable with. For example - IIS, Apache, etc.

Viewing a Page

|\' tutorials

EIMPLYEAEYLEARMIMNEG

DC.js

In most cases, we can just open the HTML file in a web browser to view it. However, when
loading external data sources, it is more reliable to run a local webserver and view the page
from the server (http://localhost:8080).

|\' tutorials

EIMPLYEAEYLEARMNING

http://localhost:8080/

3.DC.JS—CONCEPTS

DC.js is simple and easy for most front-end developers. It enables building basic charts
quickly, even without any knowledge of D3.js. Before, we start using DC.js to create
visualization; we need to get familiar with web standards. The following web standards are
heavily used in D3.js, which is the foundation of DC.js for rendering charts.

e Hypertext Markup Language (HTML)

e Document Object Model (DOM)

e Cascading Style Sheets (CSS)

Let us understand each of these web standards in detail.

Hypertext Markup Language (HTML)

As we know, HTML is used to structure the content of the webpage. It is stored in a text file
with the extension “.html”.

A typical basic HTML example looks like as shown below:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title></title>
</head>
<body>

</body>
</html>

Document Object Model (DOM)

When a HTML page is loaded by a browser, it is converted to a hierarchical structure. Every
tag in HTML is converted to an element / object in the DOM with a parent-child hierarchy. It

10

. tutorialspoint

EIMPLYEASYLEARMNING

DC.js

makes our HTML more logically structured. Once the DOM is formed, it becomes easier to

manipulate (add/modify/remove) the elements on the page.

Let us understand the DOM using the following HTML document:

<!DOCTYPE html>
<html lang="en">
<head>
<title>My Document</title>
</head>
<body>
<div>
<h1>Greeting</h1>
<p>Hello World!</p>
</div>
</body>
</html>

The document object model of the above HTML document is as follows:

Document

v

html

*—I

l—*

head body
title div
Y Y Y
My Document hl p
Greeting Hello World!

¢

tutorials

EIMPLYEAEYLEARMNING

11

DC.js

Cascading Style Sheets (CSS)

While HTML gives a structure to the webpage, CSS styles make the webpage more pleasant
to look at. CSS is a style sheet language used to describe the presentation of a document
written in HTML or XML (including XML dialects such as SVG or XHTML). CSS describes how
elements should be rendered on a webpage.

JavaScript

JavaScript is a loosely typed client side scripting language that executes in the user's browser.
JavaScript interacts with html elements (DOM elements) in order to make the web user
interface interactive. JavaScript implements the ECMAScript standards, which includes core
features based on ECMA-262 specification as well as other features, which are not based on
ECMAScript standards. JavaScript knowledge is a prerequisite for DC.js.

Components

DC.js is based on two excellent JavaScript libraries, which are -

e Crossfilter
e D3.js

Crossfilter

Crossfilter is a JavaScript library for exploring large multivariate datasets in the browser. It is
used for Grouping, Filtering, and Aggregating tens or hundreds of thousands of rows of raw
data very quickly.

D3.js

D3.js stands for Data-Driven Documents. D3.jsis a JavaScript library for manipulating
documents based on data. D3 is Dynamic, Interactive, Online Data Visualizations Framework
and used in large number of websites. D3.js is written by Mike Bostock, created as a
successor to an earlier visualization toolkit called Protovis. D3.js is used on hundreds of
thousands of websites.

12

|\' tutorials

EIMPLYEAEYLEARMIMNEG

4 INTRODUCTION TO CROSSFILTER

Crossfilter is a multi-dimensional dataset. It supports extremely fast interaction with datasets
containing a million or more records.

Basic Concepts

Crossfilter is defined under the crossfilter namespace. It uses semantic versioning. Consider
a crossfilter object loaded with a collection of fruits that is defined below:

var fruits = crossfilter([

name: “Apple”, type: “fruit”, count: 20 },
name: “Orange”, type: "fruit”, count: 10 },

name: “Grapes”, type: “fruit”, count: 50 },

N e

name: “Mango”, type: “fruit”, count: 40 }

1);

If we need to perform the total records in a group, we can use the following function:

var count = fruits.groupAll().reduceCount().value();

If we want to filter by a specific type:

var filtering = fruits.dimension(function(d) { return d.type; });

filtering.filter(“Grapes”)

Similarly, we can perform grouping with Crossfilter. To do this, we can use the following
function:

var grouping = filtering.group().reduceCount();

var first = grouping.top(2);

Hence, Crossfilter is built to be extremely fast. If you want to recalculate groups as filters are
applied, it calculates incrementally. Crossfilter dimensions are very expensive.

13

. tutorialspoint

EIMPLYEASYLEARMNING

DC.js

Crossfilter API

Let us go through the notable Crossfilter APIs in detail.

crossfilter([records]): It is used to construct a new crossfilter. If the record is
specified, then it simultaneously adds the specified records. Records can be any array
of JavaScript objects or primitives.

crossfilter.add(records): Adds the specified records to the crossfilter.

crossfilter.remove(): Removes all records that match the current filters from the
crossfilter.

crossfilter.size(): Returns the number of records in the crossfilter.

crossfilter.groupAll(): It is a function for grouping all records and reducing to a
single value.

crossfilter.dimension(value): It is used to construct a new dimension using the
specified value accessor function.

dimension.filter(value): It is used to filter records for dimension's match value, and
returns the dimension.

dimension.filterRange(range): Filters records for dimension's value that are
greater than or equal to range[0], and less than range[1].

dimension.filterAll(): Clears any filters on this dimension.

dimension.top(k): It is used to return a new array containing the top k records,
according to the natural order of this dimension.

dimension.bottom(k): It is used to return a new array containing the bottom k
records, according to the natural order of this dimension.

dimension.dispose(): It is used to remove the dimension from the crossfilter.

In the next chapter, we will understand in brief about D3.js.

§

14

tutorials

EIMPLYEAEYLEARMIMNEG

5.INTRODUCTION TO D3.JS

D3.js is a JavaScript library used to create interactive visualizations in the browser. The D3
library allows us to manipulate elements of a webpage in the context of a dataset. These
elements can be HTML, SVG, or Canvas elements, and can be introduced, removed, or edited
according to the contents of the dataset. It is a library for
manipulating DOM objects. D3.js can be a valuable aid in data exploration. It gives you
control over your data's representation and lets you add data interactivity.

D3.js is one of the premier framework when compared to other libraries. This is because; it
works on the web and data visualizations and is of enterprise grade. Another reason is its
great flexibility, which enables developers around the world to create many advanced charts.
Also, it has extended its functionality to a great extent.

Let us understand the basic concepts of D3.js, which are as follows:
e Selections
o Data join
e SVG
e Transition
e Animation
e D3.js API

Let us understand each of these concepts in detail.

Selections

Selections is one of the core concept in D3.js. It is based on the CSS Selector concept. Those
who have used and are aware of JQuery already can easily understand the selections. It
enables us to select the DOM based on CSS selectors and then provide options to modify or
append and remove the elements of DOM.

Data Join

Data join is another important concept in D3.js. It works along with selections and enables
us to manipulate the HTML document with respect to our dataset (a series of numerical
values). By default, D3.js gives dataset the highest priority in its methods and each item in
the dataset corresponds to a HTML element.

15

@ tutorialspoint

EIMPLYEASYLEARMNING

DC.js

SVG

SVG stands for Scalable Vector Graphics. SVG is an XML based vector graphics format. It
provides options to draw different shapes such as Lines, Rectangles, Circles, Ellipses, etc.
Hence, designing visualizations with SVG gives you more power and flexibility.

Transformation

SVG provides options to transform a single SVG shape element or group of SVG elements.
SVG transform supports Translate, Scale, Rotate and Skew.

Transition

Transition is the process of changing from one state to another of an item. D3.js provides a
transition() method to perform transition in the HTML page.

Animation

D3.js supports animation through transition. Animation can be done with the proper use of
transition. Transitions are a limited form of key frame animation with only two key frames:
start and end. The starting key frame is typically the current state of the DOM, and the
ending key frame is a set of attributes, styles and other properties you specify. Transitions
are well suited for transitioning to a new view without a complicated code that depends on
the starting view.

D3 js API

Let us understand some of the important D3.js API's methods in brief.

Collections API

A collection is simply an object that groups multiple elements into a single unit. It is also
called as a container. It contains Objects, Maps, Sets and Nests.

Paths API

Paths are used to draw rectangles, circles, ellipses, polylines, polygons, straight lines and
curves. SVG Paths represent the outline of a shape that can be stroked, filled, used as a
clipping path, or any combination of all three.

Axis API

16

|\' tutorials

EIMPLYEAEYLEARMIMNEG

DC.js

D3.js provides functions to draw axes. An axis is made of lines, ticks and labels. An axis uses
scale, thus each axis will need to be given a scale to work with.

Zooming API

Zooming helps to scale your content. You can focus on a particular region using the click-and-
drag approach.

Delimiter-Separated Values API

A delimiter is a sequence of one or more characters used to specify the boundary between
separate, independent regions in plain text or other data. A field delimiter is a sequence of
comma-separated values. In short, the delimiter-separated values are Comma-Separated
Values (CSV) or Tab-Separated Values (TSV).

17

|\' tutorials

EIMPLYEAEYLEARMNING

6.DC.JS—MIXINS

Mixin is an abstract functional object having a lot of pre-defined functions, which can be
mixed and used in JavaScript classes. However, they cannot be used as stand-alone. For
example, DC.js has a Mixin and dc.baseMixin, which cannot be used as it is, but is used by
all the DC chart classes such as the Line Chart, Pie Chart, etc. DC.js has a limited set of useful
Mixins to create charts easily and efficiently. They are as follows -

baseMixin: baseMixin provides common functionality for all type of charts. It
integrates crossfilter and d3.js JavaScript library and provides a simple set of function
to create charts with limited knowledge of D3.js.

capMixin: capMixin provides grouping support for the data elements below a limit
(cap).

colorMixin: colorMixin provides color support for the charts.
marginMixin: marginMixin provides margin support for the charts.

coordinateGridMixin: coordinateGridMixin provides coordinate support for the
charts.

stackMixin: stackMixin provides stacking support using the d3.layout.stack.

bubbleMixin: bubbleMixin provides bubble support for the charts.

Let us understand all these mixins in detail in the subsequent chapters.

18

. tutorialspoint

EIMPLYEASYLEARMNING

7.DC.JS —BASEMIXIN

baseMixin provides basic methods needed to create any type of a chart. It ranges from
setting the width of the chart to advanced filtering of the chart.

General Chart Options

The basicMixin provides many chart methods to get / set the properties of the charts. They
are as follows,

chartID() — Returns the internal numeric ID of the chart.

chartGroup([chartGroup]) — Gets or sets the group to which the chart belongs.
In DC.js, charts can be grouped into a single set. All charts in a group are expected to
share the same Crossfilter dataset. They are rendered as well as redrawn
simultaneously.

mychart.chartGroup('dashboard');

minWidth([minWidth]) - Sets the minimum width of the chart.

mychart.minWidth(300);

width([width]) - Gets or sets the width of the chart.

mychart.width(600);

minHeight([minHeight]) - Gets or sets the minimum height of the chart.

mychart.minHeight(300);

height([height]) - Gets or sets the height of the chart.

mychart.height(300);

title([titleFunction]) - Gets or sets the title function. Title is the SVG Element's
title of the child element in the chart (e.g. a single bar in a bar chart). Title in the
charts are represented as tooltip in the browser.

mychart.title(function(data) {

19

EIMPLYEASYLEARMNING

@ Mtutorialspoint

§

DC.js

return d.key + + d.value;

1)

label(labelFunction[??]) — Similar to the title() method, but it sets the label
instead of the title.

mychart.label(function(data) {

return d.key + + d.value;

})s

options(opts) - Sets any chart option using the JavaScript object. Each key
represents the corresponding method available in the charts and the matched method
will be invoked with the relevant value.

mychart.options({
'width' : 300,
"height' : 300
3

Here, width() and height() method will be fired with the specified value.

legend([legend]) — Attaches a legend to the chart. The legend can be created
using the d3.legend() method.

mychart.legend(
dc.legend()
.x(500)
.y(50)
.itemHeight(12)
-gap(4))

anchor(parent[??]) - Sets the root SVGElement to be either an existing chart's root
or any valid D3 single selectors. Optionally, the chart group can also be set using the
second argument.

anchorName() - Gets the DOM ID of the chart's anchored location.

svg([svgElement]) - Returns the SVGElement of the chart.

resetSvg() - Resets the SVG container in the DOM.
20

tutorials

EIMPLYEAEYLEARMNING

DC.js

root([rootElement]) - Gets the root container of the chart.

Data Options

basicMixin provides methods to set the data for the charts. The data is set as Crossfilter
dimension and group. In addition, it provides an option to get the underlying dataset.

§

dimension([dimension]) - Sets or gets the dimension of the chart. A dimension is
any valid Crossfilter dimension.

var mycrossfilter = crossfilter([]);

var ageDimension = mycrossfilter.dimension(dc.pluck('age'));

mychart.dimension(ageDimension);

group(group[??]) — Sets or gets the group of the chart. A group is any
valid Crossfilter group. The group can be named using the second argument to use it
later in the code.

var mycrossfilter = crossfilter([]);
var ageDimension = mycrossfilter.dimension(dc.pluck('age'));
mychart.dimension(ageDimension);

mychart.group(ageDimension.group(crossfilter.reduceCount()));

data([callback]) — Sets the data callback and enables us to get the underlying
chart's data set.

// get all groups
mychart.data(function (group) {

return group.all();

})s

// get top five groups
mychart.data(function (group) {
return group.top(5);

1)

keyAccessor([keyAccessor]) — Gets or sets the key accessor function. It is used
to retrieve the key from the underlying Crossfilter group. The key is used for slices in

21

tutorials

EIMPLYEAEYLEARMNING

DC.js

a pie chart and x-axis in the line / bar chart. The default key accessor function is as
follows:

chart.keyAccessor(function(d) { return d.key; });

e valueAccessor([valueAccessor]) — Gets or sets the value accessor function. It is
used to retrieve the value from the underlying Crossfilter group. The value is used for
slice size in the pie chart and y-axis position in the line / bar chart. The default value
accessor function is as follows:

chart.valueAccessor(function(d) { return d.value; 1});

e ordering([orderFunction]) — Gets or sets an ordering function to order ordinal
dimension. By default, a chart uses crossfilter.quicksort.by to sort the elements.

_chart.ordering(dc.pluck('key'));

Filter Options

Filtering is one of the highlights of DC.js. We can apply one or more filters directly on the
chart object using the filter() method and call chart's redrawGroup() or dc.redrawAll() method
to see the filtering effect on the chart. By default, a chart object takes one or more filters
using the filter() method, applies it on the underlying Crossfilter() data set, gets the filtered
data from the Crossfilter and redraws the charts using the filtered data. DC.js provides the
following methods to handle filtering in the chart.

Filter([filter])

Gets or sets the filter for the chart. If a supplied filter is new, then it will be added to the
chart's filter collection and applied on the underlying dataset. If the filter supplied is already
available in the chart's filter collection, then it will remove the filter and do the relevant
filtering on the underlying data. In short, filter method will toggle the supplied filters.

mychart.filter(10);

To remove all filters, call the filter method with null value. The filter may be any one of the
following items:

e null — Chart will remove all the filters previously applied.

o single value - Chart will call the underlying Crossfilter's filter method and send the
supplied value.

22

|\' tutorials

EIMPLYEAEYLEARMNING

DC.js

o dc.filters.RangedFilter — It accepts two values, low and high. Chart will filter out all
the data, except the value in the range between low and high value.

e dc.filters.TwoDimensionalFilter — It accepts two-dimensional values that are used
in the heat map.

¢ dc.filters.RangedTwoDimensionalFilter - It is similar to the
dc.filters.RangedFilter, except that it accepts a two-dimensional value only used in
scatter plots.

hasFilter([filter])

Checks whether the supplied filter is available or not in the chart.

replaceFilter([filter])

Replaces the current filter of the chart with the supplied filter.

filters()

Returns all current filters associated with the chart.

filterAll()

Clears all filters associated with the chart.

filterHandler([filterHandler])

Gets or sets a filter handler function. Filter handler function is used by the chart to filter the
underlying dataset using the filter. Chart has a Default Filter Handler Function and it can be
replaced by a Custom Filter Handler Function using this method. The default filter handler is
as follows:

chart.filterHandler(function (dimension, filters) {
if (filters.length === 0) {
// the empty case (no filtering)
dimension.filter(null);
} else if (filters.length === 1 && !filters[@].isFiltered) {
// single value and not a function-based filter
dimension.filterExact(filters[0]);

} else if (filters.length === 1 && filters[0].filterType ===
'RangedFilter') {

// single range-based filter

dimension.filterRange(filters[0]);

23

|\' tutorials

EIMPLYEAEYLEARMNING

DC.js

} else {
// an array of values, or an array of filter objects
dimension.filterFunction(function (d) {
for (var 1 = 0; i < filters.length; i++) {
var filter = filters[i];
if (filter.isFiltered && filter.isFiltered(d)) {
return true;

} else if (filter <= d && filter >= d) {

return true;

}

return false;

})s
}

return filters;

})s

hasFilterHandler([hasFilterHandler])

Gets or sets a has-filter handler function. This function is used by the chart to check whether
a filter is available in the chart's filter collection or not. The default has-filter handler is as
follows:

chart.hasFilterHandler(function (filters, filter) {
if (filter === null || typeof(filter) === 'undefined') {
return filters.length > 0;
}
return filters.some(function (f) {

return filter <= f && filter >= f;

1)
})s

addFilterHandler([addFilterHandler])

Gets or sets the add-filter handler function. This function is used by the chart to add the filter
into the chart's filter collection. The default add-filter handler is as follows:

chart.addFilterHandler(function (filters, filter) {

24

|\' tutorials

EIMPLYEAEYLEARMNING

DC.js

filters.push(filter);

return filters;

})s

removeFilterHandler([removeFilterHandler])

Gets or sets the remove-filter handler function. This function is used by the chart to remove
the filter from the chart's filter collection. The default remove-filter is as follows:

chart.removeFilterHandler(function (filters, filter) {
for (var i = @; i < filters.length; i++) {
if (filters[i] <= filter && filters[i] >= filter) {
filters.splice(i, 1);

break;

}

return filters;

})s

resetFilterHandler([resetFilterHandler])

Gets or sets the reset-filter handler function. This function is used by the chart to reset the
chart's filter collection. The default reset-filter is as follows:

function (filters) {

return [];

filterPrinter([filterPrinterFunction])

Gets or sets the printer-filter function. This function is used by the chart to print the filter
information.

commitHandler()

Gets or sets the commit handler. The purpose of the commit handler is to send the filtered
data to the server asynchronously.

25

|\' tutorials

EIMPLYEAEYLEARMNING

DC.js

Event Options

DC.js defines a limited set of events to do some functionalities such as Filtering, Zooming,
etc. The list of events defined in the DC.js are as follows:

renderlet - Fired after transitions are redrawn and rendered.

pretransition - Fired before the transitions start.

preRender - Fired before the chart rendering.

postRender - Fired after the chart finishes rendering including all the renderlet's logic.
preRedraw - Fired before chart redrawing.

postRedraw - Fired after the chart finishes redrawing including all the renderlet's
logic.

filtered - Fired after a filter is applied, added or removed.

zoomed - Fired after a zoom is triggered.

basicMixin provides a method, on(event, listener) to set the callback function for all the
above defined events.

§

on(event, listener) - Sets the callback or listener function for the specific event.
onClick(datum) - It is passed to D3 as the onClick handler for each chart. The

default behavior is to filter on the clicked datum (passed to the callback) and redraw
the chart group.

26

tutorials

EIMPLYEAEYLEARMIMNEG

DC.js

End of ebook preview
If you liked what you saw...
Buy it from our store @ https://store.tutorialspoint.com

27

|\' tutorials

EIMPLYEAEYLEARMNING

