DBMS - NORMALIZATION

Functional Dependency

Functional dependency FD is a set of constraints between two attributes in a relation. Functional
dependency says that if two tuples have same values for attributes Al, A2,..., An, then those two
tuples must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by an arrow sign - thatis, X=Y, where X functionally
determines Y. The left-hand side attributes determine the values of attributes on the right-hand
side.

Armstrong's Axioms

If F is a set of functional dependencies then the closure of F, denoted as F™, is the set of all
functional dependencies logically implied by F. Armstrong's Axioms are a set of rules, that when
applied repeatedly, generates a closure of functional dependencies.

o Reflexive rule — If alpha is a set of attributes and beta is_subset_of alpha, then alpha holds
beta.

¢ Augmentation rule — If a = b holds and y is attribute set, then ay - by also holds. That is
adding attributes in dependencies, does not change the basic dependencies.

e Transitivity rule — Same as transitive rule in algebra, if a = b holds and b = ¢ holds, then a
- c also holds. a = b is called as a functionally that determines b.

Trivial Functional Dependency

e Trivial — If a functional dependency FD X = Y holds, where Y is a subset of X, then itis called
a trivial FD. Trivial FDs always hold.

e Non-trivial — If an FD X - Y holds, where Y is not a subset of X, then it is called a non-trivial
FD.

¢ Completely non-trivial — If an FD X - Y holds, where x intersectY = @, itis said to be a
completely non-trivial FD.

Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad dream for any
database administrator. Managing a database with anomalies is next to impossible.

e Update anomalies — If data items are scattered and are not linked to each other properly,
then it could lead to strange situations. For example, when we try to update one data item
having its copies scattered over several places, a few instances get updated properly while a
few others are left with old values. Such instances leave the database in an inconsistent
state.

o Deletion anomalies — We tried to delete a record, but parts of it was left undeleted
because of unawareness, the data is also saved somewhere else.

¢ Insert anomalies — We tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring the database to a consistent
state.

First Normal Form

First Normal Form is defined in the definition of relations tables itself. This rule defines that all the
attributes in a relation must have atomic domains. The values in an atomic domain are indivisible
units.


http://www.tutorialspoint.com/dbms/database_normalization.htm

Course Content

Programming Java, c++
Web HTML, PHP, ASP

We re-arrange the relation table as below, to convert it to First Normal Form.

Course Content
Programming Java
Programming C++

Web HTML
Web PHP
Web ASP

Each attribute must contain only a single value from its pre-defined domain.
Second Normal Form

Before we learn about the second normal form, we need to understand the following —

e Prime attribute — An attribute, which is a part of the prime-key, is known as a prime
attribute.

¢ Non-prime attribute — An attribute, which is not a part of the prime-key, is said to be a
non-prime attribute.

If we follow second normal form, then every non-prime attribute should be fully functionally

dependent on prime key attribute. That is, if X -» A holds, then there should not be any proper
subset Y of X, for which Y - A also holds true.

Student_Project

Stu_ID Proj_ID Stu_Name Proj_Name

~— S

We see here in Student Project relation that the prime key attributes are Stu_ID and Proj_ID.
According to the rule, non-key attributes, i.e. Stu_Name and Proj Name must be dependent upon
both and not on any of the prime key attribute individually. But we find that Stu_Name can be
identified by Stu_ID and Proj Name can be identified by Proj_ID independently. This is called
partial dependency, which is not allowed in Second Normal Form.

Student
Stu_ID Stu_Name Proj_ID

Project




Proj_ID Proj_Name

We broke the relation in two as depicted in the above picture. So there exists no partial
dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form and the following must
satisfy —

¢ No non-prime attribute is transitively dependent on prime key attribute.
e For any non-trivial functional dependency, X - A, then either —
o Xis a superkey or,

o Ais prime attribute.

Student_Detall

Stu_ID Stu_Name City Zip

N

We find that in the above Student_detail relation, Stu_ID is the key and only prime key attribute.
We find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a superkey nor is
City a prime attribute. Additionally, Stu_ID - Zip - City, so there exists transitive dependency.

To bring this relation into third normal form, we break the relation into two relations as follows —

Student_Detail

Stu_ID Stu_Name Zip
ZipCodes
Zip City

Boyce-Codd Normal Form

Boyce-Codd Normal Form BCNF is an extension of Third Normal Form on strict terms. BCNF states
that —

e For any non-trivial functional dependency, X - A, X must be a super-key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the super-key
in the relation ZipCodes. So,

Stu_ID -» Stu_Name, Zip
and
Zip - City

Whirlh ~anfirmme that hath thao rolannS are |n BCNF
Loading [MathJax]/jax/output/HTML-CSS/jax.js



