DATA STRUCTURES ALGORITHMS MOCK TEST

http://www.tutorialspoint.com

Copyright © tutorialspoint.com

This section presents you various set of Mock Tests related to **Data Structures Algorithms**. You can download these sample mock tests at your local machine and solve offline at your convenience. Every mock test is supplied with a mock test key to let you verify the final score and grade yourself.

DATA STRUCTURES ALGORITHMS MOCK TEST IV

Q 1 - Recursion uses more memory space than iteration because

- A it uses stack instead of queue.
- B every recursive call has to be stored.
- C both A & B are true.
- D None of the above are true.

Q 2 - Heap is an example of

- A complete binary tree
- B spanning tree
- C sparse tree
- D binary search tree

Q 3 - In a min heap

- A minimum values are stored.
- B child nodes have less value than parent nodes.
- C parent nodes have less value than child nodes.
- D maximum value is contained by the root node.

Q 4 - In the deletion operation of max heap, the root is replaced by

A - next available value in the left sub-tree.

- B next available value in the right sub-tree.
 C any random value from the heap.
 D last element of the last level
 Q 5 All possible spanning trees of graph G
 A have same number of edges and vertices.
 B have same number of edges and but not vertices.
 C have same number of vertices but not edges.
- D depends upon algorithm being used.

Q 6 - From a complete graph, by removing maximum ______ edges, we can construct a spanning tree.

- A e-n+1
- B n-e+1
- C **n+e-1**
- D e-n-1

Q 7 - If we choose Prim's Algorithm for uniquely weighted spanning tree instead of Kruskal's Algorithm, then

- A we'll get a different spanning tree.
- B we'll get the same spanning tree.
- C spanning will have less edges.
- D spanning will not cover all vertices.

Q 8 - Re-balancing of AVL tree costs

- A O1
- B Ologn
- C On
- D O(n²)

Q 9 - A balance factor in AVL tree is used to check

- A what rotation to make.
- B if all child nodes are at same level.
- C when the last rotation occured.
- D if the tree is unbalanced.

Q 10 - Binary search tree is an example of complete binary tree with special attributes.

A - BST does not care about complete binary tree properties.

- B BST takes care of complete binary tree properties.
- C It depends upon the input.
- D None of the above.

Q 11 - The following sorting algorithms maintain two sub-lists, one sorted and one to be sorted -

- A Selection Sort
- B Insertion Sort
- C Merge Sort
- D both A &am; B

Q 12 - If locality is a concern, you can use _____ to traverse the graph.

- A Breadth First Search
- B Depth First Search
- C Either BFS or DFS
- D None of the above!

Q 13 - Access time of a binary search tree may go worse in terms of time complexity upto

- A O(n²)
- B Onlogn
- C On
- D 01

Q 14 - Shell sort uses

- A insertion sort
- B merge sort
- C selection sort
- D quick sort

Q 15 - A pivot element to partition unsorted list is used in

- A Merge Sort
- **B** Quick Sort

- C Insertion Sort
- D Selection Sort

Q 16 - A stable sorting alrithm -

- A does not crash.
- B does not run out of memory.
- C does not change the sequence of appearance of elements.
- D does not exists.

Q 17 - An adaptive sorting algorithm –

- A adapts to new computers.
- B takes advantage of already sorted elements.
- C takes input which is already sorted.
- D none of the above.

Q 18 - Interpolation search is an improved variant of binary search. It is necessary for this search algorithm to work that -

- A data collection should be in sorted form and equally distributed.
- B data collection should be in sorted form and but not equally distributed.
- C data collection should be equally distributed but not sorted.
- D None of the above.

Q 19 - If the data collection is in sorted form and equally distributed then the run time complexity of interpolation search is -

- A On
- **B O**1
- C Ologn
- D Olog(logn)

Q 20 - Which of the following algorithm does not divide the list -

- A linear search
- B binary search
- C merge sort
- D quick sort

Q 21 - The worst case complexity of binary search matches with -

- A interpolation search
- B linear search
- C merge sort
- D none of the above

Q 22 - Apriori analysis of an algorithm assumes that -

- A the algorithm has been tested before in real environment.
- B all other factors like CPU speed are constant and have no effect on implementation.
- C the algorithm needs not to be practical.
- D none of the above.

Q 23 - Aposterior analysis are more accurate than apriori analysis because -

- A it contains the real data.
- B it assumes all other factors to be dynamic.
- C it assumes all other factors to be constant.
- D it is a result of reverse-engineering.

Q 24 - Project scheduling is an example of

- A greedy programming
- B dynamic programming
- C divide and conquer
- D none of the above.

Q 25 - In conversion from prefix to postfix using stack data-structure, if operators and operands are pushed and popped exactly once, then the run-time complexity is -

- A O1
- B On
- C Ologn
- D O(n²)

ANSWER SHEET

Question Number	Answer Key
1	В
2	А

3	С			
4	D			
5	А			
6	А			
7	В			
8	В			
9	D			
10	А			
11	D			
12	В			
13	С			
14	А			
15	В			
16	С			
17	В			
18	А			
19	D			
20	А			
21	В			
22	В			
23	А			
24	В			
25	В			
Loading [Mathlay]/jay/output/HTML-CSS/jay is				

Loading [MathJax]/jax/output/HTML-CSS/jax.js
--