DATA STRUCTURES ALGORITHMS MOCK TEST

http://www.tutorialspoint.com

Copyright © tutorialspoint.com

This section presents you various set of Mock Tests related to **Data Structures Algorithms**. You can download these sample mock tests at your local machine and solve offline at your convenience. Every mock test is supplied with a mock test key to let you verify the final score and grade yourself.

DATA STRUCTURES ALGORITHMS MOCK TEST II

Q 1 - Quick sort algorithm is an example of

- A Greedy approach
- B Improved binary search
- C Dynamic Programming
- D Divide and conquer

Q 2 - Which of the following asymptotic notation is the worst among all?

A - On + 9378

 $B - O(n^3)$

C - n^{O1}

D - 2^{On}

Q 3 - The following formular is of

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

- A Bianry Tree
- B Complete Binary Tree
- C Binary Search Tree
- D All of the above

Q 4 - Travelling salesman problem is an example of			
A - Dynamic Algorithm			
B - Greedy Algorithm			
C - Recursive Approach			
D - Divide & Conquer			
Q 5 - Find the odd out			
A - Prim's Minimal Spanning Tree Algorithm			
B - Kruskal's Minimal Spanning Tree Algorithm			
C - Floyd-Warshall's All pair shortest path Algorithm			
D - Dijkstra's Minimal Spanning Tree Algorithm			
Q 6 - Which of the following searching techniques do not require the data to be in sorted form			
A - Binary Search			
B - Interpolation Search			
C - Linear Search			
D - All of the above			
Q 7 - Minimum number of spanning tree in a connected graph is			
A - n			
$B - n^{n-1}$			
C - 1			
D - 0			
Q 8 - Visiting root node after visiting left and right sub-trees is called			
A - In-order Traversal			
B - Pre-order Traversal			
C - Post-order Traveral			
Q 9 - Binary search tree has best case run-time complexity of $Ologn$. What could the worst case?			
A - On			
$B - O(n^2)$			
C - O(n ³)			

Q 10 - The minimum number of edges required to create a cyclid graph of n vertices is
A - n
B - n - 1
C - n + 1
D - 2n
Q 11 - Maximum degree of any vertex in a simple graph of vertices n is
A - 2n - 1
B - n
C - n + 1
D - n - 1
Q 12 - What could be the worst case height of an AVL tree?
A - 0.97 log n
B - 2.13 log n
C - 1.44 log n
D - n ² log n
Q 13 - What is not true about insertion sort?
A - Exhibits the worst case performance when the initial array is sorted in reverse order.
B - Worst case and average case performance is O(n ²)
C - Can be compared to the way a card player arranges his card from a card deck.
D - None of the above!
Q 14 - Which of the following algorithm is not stable?
A - Bubble Sort
B - Quick Sort
C - Merge Sort
D - Insertion Sort
Q 15 - If the array is already sorted, which of these algorithms will exhibit the best performance A - Merge Sort

C - Quick Sort D - Heap Sort Q 16 - Which of the following is example of in-place algorithm? A - Bubble Sort B - Merge Sort C - Insertion Sort D - All of the above Q 17 - Graph traversal is different from a tree traversal, because A - trees are not connected. B - graphs may have loops. C - trees have root. D - None is true as tree is a subset of graph. Q 18 - Which method can find if two vertices x & y have path between them? A - Depth First Search B - Breadth First Search C - Both A & B D - None A or B Q 19 - Time complexity of Depth First Traversal of is $A - \Theta |V| + |E|$ $B - \Theta|V|$ $C - \Theta |E|$ $D - \Theta |V| * |E|$ Q 20 - An algorithm is A - a piece of code to be executed. B - a loosely written code to make final code. C - a step by step procedure to solve problem.

B - Insertion Sort

D - all of the above.

Q 21 - Apriory algorithm analysis does not include -

B - Space Complexity			
C - Program Complexity			
D - None of the above!			
Q 22 - Which of the	e below given series is Non-Increasing Order –		
A - 1, 3, 4, 6, 8, 9			
B - 9, 8, 6, 4, 3, 1			
C - 9, 8, 6, 3, 3, 1			
D - 1, 3, 3, 6, 8, 9	D - 1, 3, 3, 6, 8, 9		
Q 23 - Which of the	e following has search effeciency of O1 -		
A - Tree			
B - Heap			
C - Hash Table			
D - Linked-List			
Q 24 - After each it	eration in bubble sort		
A - at least one element is at its sorted position.			
B - one less comparison is made in the next iteration.			
C - Both A & B are true.			
D - Neither A or B are true.			
Q 25 - What about	recursion is true in comparison with iteration?		
A - very expensive in terms of memory.			
B - low performance.			
C - every recursive program can be written with iteration too.			
D - all of the above are true!			
ANSWER SHEET			
Question Number	Answer Key		
1	D D		
2	D		
3	С		

A - Time Complexity

4	В
5	C
6	C
7	C
8	C
9	A
10	A
11	D
12	C
13	D
14	В
15	В
16	В
17	C
18	C
19	A
20	C
21	C
22	C
23	C
24	C
25	D

Loading [MathJax]/jax/output/HTML-CSS/jax.js