D - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. D language is rich in built-in operators and provides the following types of
operators:

e Arithmetic Operators

¢ Relational Operators

e Logical Operators

e Bitwise Operators

e Assignment Operators

¢ Misc Operators

This tutorial will explain the arithmetic, relational, logical, bitwise, assignment and other operators
one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by D language. Assume variable A
holds 10 and variable B holds 20 then:

Show Examples

Operator Description Example
+ Adds two operands A + B will give 30
- Subtracts second operand from the first A - B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B/ A will give 2
% Modulus Operator and remainder of after an B % A will give O
integer division
++ Increments operator increases integer value by one A++ will give 11
-- Decrements operator decreases integer value by A-- will give 9
one

Relational Operators

Following table shows all the relational operators supported by D language. Assume variable A
holds 10 and variable B holds 20, then:

Show Examples

Operator Description Example

== Checks if the values of two operands are equal or A == B is nottrue.
not, if yes then condition becomes true.

I= Checks if the values of two operands are equal or A! = Bistrue.
not, if values are not equal then condition becomes

http://www.tutorialspoint.com/d_programming/d_programming_operators.htm
/d_programming/d_programming_arithmetic_operators.htm
/d_programming/d_programming_relational_operators.htm

true.

> Checks if the value of left operand is greater than A > Bis nottrue.
the value of right operand, if yes then condition
becomes true.

< Checks if the value of left operand is less than the A <Bistrue.
value of right operand, if yes then condition
becomes true.

>= Checks if the value of left operand is greater than A >= B is not true.
or equal to the value of right operand, if yes then
condition becomes true.

<= Checks if the value of left operand is less than or A <=B s true.
equal to the value of right operand, if yes then
condition becomes true.

Logical Operators

Following table shows all the logical operators supported by D language. Assume variable A holds
1 and variable B holds 0, then:

Show Examples

Operator Description Example
&& Called Logical AND operator. If both the operands is false.

are non-zero, then condition becomes true.

[Called Logical OR Operator. If any of the two Al |Bis true.
operands is non-zero, then condition becomes true.

! Called Logical NOT Operator. Use to reverses the I[A &&B]is true.
logical state of its operand. If a condition is true
then Logical NOT operator will make false.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ™ are
as follows:

p q P&q pla p~q
0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:
A =00111100
B = 00001101

A&B = 0000 1100

/d_programming/d_programming_logical_operators.htm

A|B = 00111101
A”B = 0011 0001
~A =11000011

The Bitwise operators supported by D language are listed in the following table. Assume variable A
holds 60 and variable B holds 13, then:

Show Examples

Operator

Description

Binary AND Operator copies a bit to the result if it
exists in both operands.

Binary OR Operator copies a bit if it exists in either
operand.

Binary XOR Operator copies the bitif itis setin one
operand but not both.

Binary Ones Complement Operator is unary and
has the effect of 'flipping' bits.

Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by
the right operand.

Example

[A&B]will give 12, which is
0000 1100

A|B will give 61, which is
00111101

AB will give 49, which is 0011
0001

A will give -61, which is 1100
0011 in 2's complement
form.

A << 2 will give 240 which is
1111 0000

A >> 2 will give 15 which is
0000 1111

Assignment Operators
There are following assignment operators supported by D language:

Show Examples

Operator

Description

Simple assignment operator, Assigns values from
right side operands to left side operand

Add AND assignment operator, It adds right
operand to the left operand and assign the result to
left operand

Subtract AND assighment operator, It subtracts
right operand from the left operand and assign the
result to left operand

Multiply AND assignment operator, It multiplies
right operand with the left operand and assign the
result to left operand

Divide AND assignment operator, It divides left
operand with the right operand and assign the
result to left operand

Modulus AND assignment operator, It takes

Example

C = A + B will assign value of
A+ BintoC

C+=AisequivalenttoC=C
+ A

C-=AisequivalenttoC=C-
A

C*= AisequivalenttoC=C
* A

C/= AisequivalenttoC=C/
A

C %= Ais equivalenttoC=C

/d_programming/d_programming_bitwise_operators.htm
/d_programming/d_programming_assignment_operators.htm

modulus using two operands and assign the result % A
to left operand

<<= Left shift AND assignment operator C<<=2issameasC=C
<< 2

>>= Right shift AND assignment operator C>>=2issameasC=C
>> 2

&= Bitwise AND assignment operator C&=2issameasC=C&2

~= bitwise exclusive OR and assignment operator ~=2issameasC=C" 2

|= bitwise inclusive OR and assignment operator C|=2issameasC=C|2

Misc Operators ↦ sizeof & ternary
There are few other important operators including sizeof and ? : supported by D Language.

Show Examples

Operator Description Example

sizeof Returns the size of an variable. sizeofa, where a is integer,
will return 4.

& Returns the address of an variable. &a; will give actual address
of the variable.

* Pointer to a variable. *a; will pointer to a variable.

?: Conditional Expression If Condition is true ? Then

value X : Otherwise value Y

Operators Precedence in D

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator.

For example x =7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

Category Operator Associativity
Postfix [1->.++-- Left to right
Unary + - ! ~ ++ - - type* & sizeof Right to left
Multiplicative */ % Left to right
Additive + - Left to right
Shift << >> Left to right

Relational <<=>>= Left to right

/d_programming/d_programming_sizeof_operator.htm
/d_programming/d_programming_operators_precedence.htm

Equality
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment

Comma

e

>

&&

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left

Left to right

