
http://www.tutorialspoint.com/d_programming/d_programming_associative_arrays.htmCopyright © tutorialspoint.com

D - ASSOCIATIVE ARRAYSD - ASSOCIATIVE ARRAYS

Associative arrays have an index that is not necessarily an integer, and can be sparsely populated.
The index for an associative array is called the key, and its type is called the KeyType.

Associative arrays are declared by placing the KeyType within the [] of an array declaration. A
simple example for associative array is shown below.

import std.stdio;

void main ()
{
 int[string] e; // associative array b of ints that are

 e["test"] = 3;
 writeln(e["test"]);

 string[string] f;

 f["test"] = "Tuts";
 writeln(f["test"]);

 writeln(f);

 f.remove("test");
 writeln(f);
}

When the above code is compiled and executed, it produces the following result:

3
Tuts
["test":"Tuts"]
[]

Initialization
A simple initialization of associative array is shown below.

import std.stdio;

void main ()
{
 int[string] days =
 ["Monday" : 0, "Tuesday" : 1, "Wednesday" : 2,
 "Thursday" : 3, "Friday" : 4, "Saturday" : 5,
 "Sunday" : 6];
 writeln(days["Tuesday"]);
}

When the above code is compiled and executed, it produces the following result:

1

Properties

Property Description

.sizeof Returns the size of the reference to the associative array; it is 4 in
32-bit builds and 8 on 64-bit builds.

http://www.tutorialspoint.com/d_programming/d_programming_associative_arrays.htm

.length Returns number of values in the associative array. Unlike for
dynamic arrays, it is read-only.

.dup Create a new associative array of the same size and copy the
contents of the associative array into it.

.keys Returns dynamic array, the elements of which are the keys in the
associative array.

.values Returns dynamic array, the elements of which are the values in
the associative array.

.rehash Reorganizes the associative array in place so that lookups are
more efficient. rehash is effective when, for example, the program
is done loading up a symbol table and now needs fast lookups in it.
Returns a reference to the reorganized array.

.byKey Returns a delegate suitable for use as an Aggregate to a
ForeachStatement which will iterate over the keys of the
associative array.

.byValue Returns a delegate suitable for use as an Aggregate to a
ForeachStatement which will iterate over the values of the
associative array.

.getKeykey, lazyValuedefVal Looks up key; if it exists returns corresponding value else
evaluates and returns defVal.

.removeKeykey Removes an object for key.

An example for using the above properties is shown below.

import std.stdio;

void main ()
{
 int[string] array1;

 array1["test"] = 3;
 array1["test2"] = 20;
 writeln("sizeof: ",array1.sizeof);
 writeln("length: ",array1.length);
 writeln("dup: ",array1.dup);

 array1.rehash;
 writeln("rehashed: ",array1);

 writeln("keys: ",array1.keys);
 writeln("values: ",array1.values);

 foreach (key; array1.byKey) {
 writeln("by key: ",key);
 }

 foreach (value; array1.byValue) {
 writeln("by value ",value);
 }

 writeln("get value for key test: ",array1.get("test",10));
 writeln("get value for key test3: ",array1.get("test3",10));

 array1.remove("test");
 writeln(array1);
}

When the above code is compiled and executed, it produces the following result:

sizeof: 8
length: 2
dup: ["test2":20, "test":3]
rehashed: ["test":3, "test2":20]
keys: ["test", "test2"]
values: [3, 20]
by key: test
by key: test2
by value 3
by value 20
get value for key test: 3
get value for key test3: 10
["test2":20]

Loading [MathJax]/jax/output/HTML-CSS/jax.js

