
Cypress

 i

Cypress

 i

About the Tutorial

Cypress is the open-source and free test automation tool. It can be used for front end and

application programming interface (API) test automation. This tutorial shall provide you

with thorough concepts on Cypress and its features.

Audience

This tutorial is designed for the professionals working in software testing who want to hone

their skills on a robust automation testing tool like Cypress. The tutorial contains practical

examples on all important topics.

Prerequisites

Before proceeding with the tutorial, you should have a fair knowledge on JavaScript and

object oriented programming concepts. Besides this, a good understanding of basics in

testing is important to proceed with this tutorial.

Copyright & Disclaimer

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Cypress

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Cypress – Introduction .. 1

Features ... 1

Disadvantages.. 2

2. Cypress — Architecture and Environment Setup ... 3

Difference between Cypress and Selenium ... 3

Cypress Environment Setup .. 4

3. Cypress — Test Runner ... 11

4. Cypress — Build First Test ... 13

Cypress Folder Structure ... 13

Structure of a Basic Test .. 13

5. Cypress — Supported Browsers .. 16

Execution from Other Browsers .. 16

6. Cypress — Basic Commands .. 18

7. Cypress — Variables.. 26

8. Cypress — Aliases ... 27

Sharing Context ... 27

Elements .. 27

Routes .. 27

Requests .. 27

9. Cypress — Locators ... 29

Rules of CSS expression ... 29

Cypress

 iii

10. Cypress — Assertions .. 31

Implicit Assertions ... 31

Explicit Assertions .. 32

Other Cypress assertions ... 33

11. Cypress — Text Verification .. 35

12. Cypress — Asynchronous Behavior ... 38

Promise .. 39

13. Cypress — Working with XHR ... 41

14. Cypress — jQuery.. 42

15. Cypress — Checkbox ... 45

Cypress Commands ... 45

16. Cypress — Tabs ... 48

17. Cypress — Dropdown ... 50

Dropdown Cypress Commands ... 50

18. Cypress — Alerts ... 53

19. Cypress — Child Windows ... 60

20. Cypress — Hidden Elements ... 62

21. Cypress — Frames ... 65

22. Cypress — Web Tables .. 68

23. Cypress — Mouse Actions ... 71

24. Cypress — Cookies .. 73

25. Cypress — Get and Post .. 76

Get Method ... 76

Post Method .. 77

26. Cypress — File Upload .. 78

27. Cypress — Data Driven Testing ... 80

28. Cypress — Prompt Pop-up Window .. 82

29. Cypress — Dashboards .. 85

Cypress

 iv

Setup Cypress Dashboard .. 85

30. Cypress — Screenshots and Videos ... 90

Screenshots ... 90

Videos .. 92

31. Cypress — Debugging ... 95

32. Cypress — Custom Commands .. 96

33. Cypress — Fixtures .. 99

34. Cypress — Environment Variables .. 102

Configure Environment Variables .. 103

35. Cypress — Hooks .. 104

TAG .. 105

36. Cypress — Configuration of JSON File ... 108

Override Default values ... 109

Override Default configurations .. 111

37. Cypress — Reports .. 113

Mochawesome Report .. 113

JUnit Report ... 116

teamcity Report ... 117

38. Cypress — Plugins ... 119

39. Cypress — GitHub ... 120

Installation ... 120

GitHub Integration Enabling .. 120

Cypress

 1

Cypress is an open-source and free test automation tool, which can be used extensively

in the long run. It is mainly used for front end test automation. This tool is mainly

developed to solve the issues that the teams face, while automating an application.

Cypress helps to achieve the following:

 Configure tests.

 Create tests.

 Execute tests.

 Identify errors (if any).

Selenium and Cypress are often compared in terms of their functionalities. However,

Cypress is different in architecture and features. Moreover, it resolves some of the issues

we face in Selenium.

Cypress is based on Javascript and executes tests within the browser. It helps to develop

the tests which include:

 Unit tests.

 End to end tests.

 Integration tests.

Features

The important features of Cypress are listed below:

 Supports Test-Driven development.
 Provides Dashboard services.
 Efficient debugging with Developer Tools accompanied with generation of stack

trace and errors.
 Provides the screenshots for failed tests.
 Not necessary to add waits to stop the execution for some time. By-default, the

waits are applied, prior to executing the following step or assertion.
 Able to monitor and control the characteristics of server response, functions, and

timers, which are essentially needed for unit testing.
 Check and manage network traffic.
 Allows the multi-browser support.
 In-built feature to capture videos of execution is available.
 Can be integrated with continuous integration tools.
 Page responsiveness with viewport sizing.

1. Cypress – Introduction

Cypress

 2

 Reloads changes applied to tests by default.
 Friendly Application Programming Interfaces (APIs) are available.
 Test runner available, which allows the test execution straight from the User

Interface (UI).

Disadvantages

There are some disadvantages of using Cypress and they are listed below:

 It is only based on JavaScript.
 A relatively new tool and hence, the community support is not extensive.
 It cannot perform mobile testing.
 Shadow Document Object Model (DOM) cannot be accessed.
 Tabs/child windows are managed by workarounds.

Cypress

 3

Cypress architecture is illustrated in the below diagram:

The source of the above diagram is https://www.tutorialspoint.com/cypress-architecture-

test-automation

Automation tools like Selenium work by running outside the browser. However, the

Cypress has a different architecture. It runs within the browser. Cypress is basically based

on the server - Node.js.

There is a continued interaction of Cypress with the Node.js and they work in coordination

with each other. As a result, Cypress can be utilised for testing both the front and backend

of the application.

Cypress is thus, capable of handling the tasks performed at a real time on the UI and

simultaneously can also perform the actions outside of the browser.

Difference between Cypress and Selenium

The basic differences between Cypress and Selenium are listed below:

2. Cypress — Architecture and Environment
Setup

https://www.tutorialspoint.com/cypress-architecture-test-automation
https://www.tutorialspoint.com/cypress-architecture-test-automation

Cypress

 4

Cypress Selenium

It is based on Javascript. It is based on Java, C#, Python and JavaScript.

It has small community support It has big community support.

It includes an in-built video capture

feature.

There is no in-built video capture feature.

No APIs are available to handle the

tabs/child windows.

APIs available to handle tabs/child windows.

No parallel execution can be performed. Parallel execution can be performed.

Only installation of npm needed. Supplemental Jars, libraries, and so on are

required to be added as project dependencies.

Cypress Environment Setup

For Cypress environment setup, visit the link: https://nodejs.org/en/download/. The

screen that will appear is given below:

There shall be both Windows and macOS Installer. We have to get the package as per the

local operating system.

https://nodejs.org/en/download/

Cypress

 5

For a 64- bit Windows configuration, the following pop-up comes up to save the installer.

Once the installation is done, a nodejs file gets created in the Program files. The path of

this file should be noted. Then, enter environment variables from the Start, as shown

below:

Cypress

 6

In the System Properties pop-up, move to Advanced, click on Environment Variables. Then

click on OK.

Cypress

 7

In the Environment Variables pop-up, move to the System variables section and click on

New.

Enter NODE_HOME and the node.js path (noted earlier) in the Variable name and the

Variable value fields respectively in the New System Variable pop-up.

Cypress

 8

Once the path of the node.js file is set, we shall create an empty folder (say

cypressautomation) in any desired location.

Next, we need to have a JavaScript editor to write the code for Cypress. For this, we can

download Visual Studio Code from the link https://code.visualstudio.com/

As per the local operating system, choose the correct package:

Once the executable file is downloaded, and all the installation steps are completed, the

Visual Studio Code gets launched.

Select the option Open Folder from the File menu. Then, add the CypressAutomation folder

(that we have created before) to the Visual Studio Code.

https://code.visualstudio.com/

Cypress

 9

We need to create the package.json file with the below command from terminal:

npm init

We have to enter details like the package name, description, and so on, as mentioned in

the image given below:

Once done, the package.json file gets created within the project folder with the information

we have provided.

Finally, to install Cypress run the command given below:

npm install cypress --save-dev

You will get the following output:

Cypress

 10

Cypress

 11

Cypress Test Runner helps to trigger the test execution. As we complete Cypress

installation, there comes a suggestion from the tool on the terminal, as mentioned below:

You can open Cypress by running: node_modules/.bin/cypress open

To open the Test Runner, we have to run the below mentioned command:

 node_modules/.bin/cypress open

The Test Runner window opens up after some time with the message that a sample project

folder structure has been provided by Cypress under examples folder.

Click on the OK, got it! button. The screen that will appear on your computer would be as

follows:

Then the Test Runner is launched, with the more than one spec files available under the

examples folder, as stated below:

3. Cypress — Test Runner

Cypress

 12

To run a specific file, for example, test2.spec.js, we have to click it. Also, the browser and

the option to Stop the execution are available.

The execution shall begin with the following screen showing the test steps, name of test

case, test suite, URL, test duration, dimension of browser, and so on.

Cypress

 13

Once Cypress has been configured, a framework gets created within the project which is

automatically visible in the Explorer. The new test file (say FirstTest.spec.js) should be

created within the integration folder, as mentioned below.

Cypress Folder Structure

Let us understand the folder structure in Cypress. The factors that are included in a

Cypress folder are explained below:

 fixtures: Test data in form of key-value pairs for the tests are maintained here.

 integration: Test cases for the framework are maintained here.

 plugins: Cypress events (prior and post events to be executed for a test) are

maintained here.

 support: Reusable methods or customized commands, which can be utilised by test

cases directly, without object creation are created here.

 videos: Executed test steps are recorded in the form of videos and maintained here.

 node_modules: Project dependencies from the npm are maintained in this folder.

It is the heart of the Cypress project execution.

 cypress.json: Default configurations are set in this folder. The values of the current

configurations can be modified here, which overrules the default configurations.

 package.json: Dependencies and scripts for the projects are maintained in this

folder.

Structure of a Basic Test

Cypress follows the JavaScript test frameworks (Mocha, Jasmine, and so on). To create a

test in Cypress, we have to adhere to the below mentioned framework guidelines:

4. Cypress — Build First Test

Cypress

 14

 Test suite name has to be provided within the describe function.

 Test case names within a test suite have to be provided within the same or you

have to specify the function.

 Test steps within a test case have to be implemented inside the it/specify block.

Basic Test Implementation

The basic test implementation can be done by using the following command:

// test suite name

describe('Tutorialspoint Test', function () {

// Test case

 it('Scenario 1', function (){

 // test step for URL launching

 cy.visit("https://www.google.com/");

 });

 });

The cy command used above does not require an object invocation. It becomes available

by default on installing the node modules.

Test Execution

For execution from the command line, run the command given below:

 ./node_modules/.bin/cypress run

Here, all the files within the integration folder get triggered.

For execution from the Test Runner, run the command stated below:

 ./node_modules/.bin/cypress open

Then, click on the spec file that we want to trigger for execution.

To trigger execution for a specific file from command line, run the command

mentioned below:

 cypress run --spec "<spec file path>"

The following screen will appear on your computer:

Cypress

 15

Cypress

 16

Cypress can run tests in browsers like Chrome, Electron, and Firefox. In the Test Runner,

we have the option to choose the browser from the right upper corner.

Also, it must be noted that if a browser option is not available, it means we do not have

the latest version of that browser in our system.

Execution from Other Browsers

The execution from other browsers from Command Line is explained below:

To run the execution in Chrome, you need to run the below mentioned command:

 ./node_modules/.bin/cypress run -- browser chrome

You can see the following screen:

To run the execution in Firefox, run the command given below:

 ./node_modules/.bin/cypress run -- browser firefox

You can see the following screen:

5. Cypress — Supported Browsers

Cypress

 17

To run the execution in headed mode, run the command given below:

 ./node_modules/.bin/cypress run -- headed

From the command line, Cypress executes tests in headless mode, if no option is specified.

Cypress

 18

Cypress basic commands are listed below:

and

It is used to create an assertion and is an alias of .should ().

The usage is as follows:

//element is visible & enabled

cy.get('#txt').should('be.visible').and('be.enabled')

//element is checked

cy.contains('Subject').and('be.checked')

as

It provides an alias for later usage.

The usage is as follows:

//alias element as parent

cy.get('#txt').find('li').first().as('parent')

blur

It blurs an element in focus.

The usage is as follows:

//blur input

cy.get('#txt'). type('abc').blur()

check

It checks radio buttons or checkboxes and is applied to elements having input tags.

The usage is as follows:

//checks element having class attribute chkbox

cy.get('.chkbox').check()

children

It obtains the sub elements of an element.

The usage is as follows:

6. Cypress — Basic Commands

Cypress

 19

//obtains children of element n

cy.get('n').children()

clear

It removes the value from textarea or input.

The usage is as follows:

//removes input abc

cy.get('#txt'). type('abc').clear()

clearCookie

It removes a particular browser cookie.

The usage is as follows:

//clear abc cookie

cy.clearCookie('abc')

clearCookies

It removes the browser cookies from an existing domain and subdomain.

The usage is as follows:

//clear all cookies

cy.clearCookies()

clearLocalStorage

It removes the local Storage data from an existing domain and subdomain.

The usage is as follows:

//clear all local storage

cy. clearLocalStorage ()

click

It clicks an element in Document Object Model (DOM).

The usage is as follows:

//click on element with id txt

cy.get('#txt').click()

contains

Cypress

 20

It obtains an element having a specific text. The element can have more than the text and

still match.

The usage is as follows:

//returns element in #txt having Tutor text

cy.get('#txt').contains('Tutor')

dblclick

It double-clicks an element in Document Object Model (DOM).

The usage is as follows:

//double clicks element with id txt

cy.get('#txt').dblclick()

debug

It fixes a debugger and log values are returned by prior command.

The usage is as follows:

//pause to debug at start of command

cy.get('#txt').debug()

document

It obtains window.document on the active page.

The usage is as follows:

cy.document()

each

It iterates through an array having the property length.

The usage is as follows:

//iterate through individual li

cy.get('li').each(() => {...})

end

It ends a command chain.

The usage is as follows:

//obtain null instead of input

cy.contains('input').end()

Cypress

 21

eq

It refers to an element at a particular index in an array of elements.

The usage is as follows:

//obtain third td in tr

cy.get('tr>td').eq(2)

exec

It runs a system command.

The usage is as follows:

cy.exec('npm init')

find

It obtains the descendant elements of a particular locator.

The usage is as follows:

//obtain td from tr

cy.get('tr').find('td')

first

It obtains the first element from a group of elements.

The usage is as follows:

//obtain first td in tr

cy.get('tr>td').first()

get

It obtains single or multiple elements by locator.

The usage is as follows:

//obtain td from tr

find

It obtains the descendant elements of a particular locator.

The usage is as follows:

//obtain all td from tr in list

cy.get('tr>td')

Cypress

 22

getCookie

It obtains a particular browser cookie by its name.

The usage is as follows:

cy.getCookie('abc')

getCookies

It obtains all the cookies

The usage is as follows:

cy.getCookies()

go

It moves forward or backward to the next or previous URL in browser history.

The usage is as follows:

//like clicking back button

cy.go('back')

//like clicking forward button

cy.go('forward')

visit

It launches an URL.

The usage is as follows:

cy.visit('https://www.tutorialspoint.com/index.htm')

next

It obtains the immediate sibling of an element within a group of elements in Document

Object Model (DOM).

The usage is as follows:

//gives the following link in element l.

cy.get('l a:first').next()

parent

It obtains the parent element from a group of elements in DOM.

The usage is as follows:

//get parent of element with class h

Cypress

 23

cy.get('.h').parent()

should

It is used to create an assertion and is an alias of .and ().

The usage is as follows:

//assert element is visible & enabled

cy.get('#txt').should('be.visible').and('be.enabled')

wait

Wait for a certain time in milliseconds or for an aliased element prior to moving the

following step.

The usage is as follows:

cy.wait(1000)

title

It obtains the document.title of the active page.

The usage is as follows:

cy.title()

viewport

It manages the dimension and positioning of the screen.

The usage is as follows:

// viewport to 100px and 500px

cy.viewport(100, 500)

log

It prints the messages to the Command Log.

The usage is as follows:

cy.log('Cypress logging ')

reload

It is used for page reloading.

The usage is as follows:

Cypress

 24

cy.reload()

Cypress

 25

In Cypress, there is usage of variables like var, let, and const. While working with closures,

we can use the objects that were obtained without assignment. But, this is not the case,

when we are working with mutable objects.

When an object modifies its characteristics, we may need to compare its prior value to its

new value.

Code Implementation

We can do the code implementation by using the below mentioned command:

cy.get('.btn').then(($span) => {

 // value capture before button click and stored in const

 const n = parseInt($span.text())

 cy.get('b').click().then(() => {

 // value capture after button click and stored in const

 const m = parseInt($span.text())

 // comparison

 expect(n).to.eq(m)

 })

})

In the above case, we are using const variables since object $span is undergoing change.

While dealing with mutable objects and its value, it is recommended to use variables of

type const.

7. Cypress — Variables

Cypress

 26

Cypress aliases are an important component that have multiple uses. These uses are listed

below:

Sharing Context

We have to use .as() to alias something that we have to share. To alias objects and

primitives, Mocha context objects are used. The alias object can be accessed with this.*.

Mocha by default, shares context for all the hooks applicable for the test and the alias

properties are flushed post the execution of a test.

describe('element', () => {

 beforeEach(() => {

 cy.wrap('eleone').as('x')

 })

 context('subelement', () => {

 beforeEach(() => {

 cy.wrap('eletwo').as('y')

 })

 it('aliases properties', function () {

 expect(this.x).to.eq(' eleone ')

 expect(this.y).to.eq(' eleone ')

 })

 })

 })

})

We can handle fixtures by sharing context. We can also use cy.get(), which is an

asynchronous command, to access an alias with the help of @ symbol (instead of using

this.*) This is a synchronous command.

beforeEach(() => {

 // alias fixtures

 cy.fixture('users.json').as('u')

})

it('scenario', function () {

 // '@' to handle aliases

 cy.get('@u').then((u) => {

8. Cypress — Aliases

Cypress

 27

 // access element argument

 const i = u[0]

 //verification

 cy.get('header').should('contain', u.name)

 })

})

Elements

Alias can be used with Document Object Model (DOM) elements and later be reused. Here

in the below example, by default Cypress makes a reference to td collection obtained as

the alias cols. To use the same cols, we have to use cy.get() command.

// alias td in tr

cy.get('tr').find('td').as('cols')

cy.get('@cols').first().click()

As we used @ in cy.get(), Cypress searches for the present alias (cols) and yields its

reference.

Routes

Aliases can be utilised with routes. It makes sure that the application has made the

requests. Then, it awaits a response from the server and accesses the request for

verification.

cy.intercept('POST', '/users', { id: 54 }).as('u')

cy.get('#btn').click()

cy.wait('@u').then(({ request }) => {

//assertion

 expect(request.body).to.have.property('name', 'User')

})

cy.contains('User added')

Requests

Aliases can be utilised with requests. We can alias a request and later use its properties.

This can be done as follows:

cy.request('https://jsonplaceholder.cypress.io/comments').as('c')

// other implementations if any

cy.get('@c').should((response) => {

 if (response.status === 404) {

Cypress

 28

 // assertion

 expect(response).to.have.property('duration')

 } else {

 // do something else

 }

 })

})

Cypress

 29

Cypress only supports the Cascading Style Sheets (CSS) selectors to identify the elements.

However, it can also work with xpath, with the help of the 'Cypress-Xpath' plugin.

Let us consider an html code snippet and understand some of the rules of css expression.

Rules of CSS expression

The rules of Cascading Style Sheets (CSS) expression are as follows:

 Syntax with attribute-id and tagname is tagname#id: Here, the css expression

should be -input#gsc-i-id1.

 Syntax with attribute-class and tagname is tagname.class: Here, the css expression

should be - input.gsc-input.

 Syntax with any attribute value and tagname is tagname[attribute='value': Here,

the css expression should be - input[title='search'].

 Syntax with parent to child traversal is parent child: Here, the css expression should

be -tr td.

Cypress gives the feature of Open Selector Playground from which we can locate and

identify elements automatically. This feature resides inside the Test Runner window which

is highlighted in the below image.

On clicking on the Open Selector Playground, an arrow gets visible. Click on it and move

it to the element, which we have to identify. The css expression gets populated in the field

cy.get available just to the right of the arrow.

Simultaneously, the element gets highlighted, as shown in the following image:

9. Cypress — Locators

Cypress

 30

Cypress

 31

Cypress has more than one type of assertions obtained from various libraries like Mocha,

Chai, and so on. The assertion types are explicit and implicit.

Implicit Assertions

If an assertion is applicable to the object obtained from the parent command in a chain, it

is known as the implicit assertion. The popular implicit assertions include .and/.should.

These commands cannot be used as standalone. Generally, they are used when we have

to verify multiple checks on a particular object.

Let us illustrate implicit assertion with an example given below:

// test suite

describe('Tutorialspoint', function () {

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://www.tutorialspoint.com/videotutorials/index.php")

 // assertion to validate count of sub-elements and class attribute value

 cy.get('.toc chapters').find('li').should('have.length',5)

 .and('have.class', 'dropdown')

 });

 });

Execution Results

The output is as follows:

10. Cypress — Assertions

Cypress

 32

The output logs show two assertions obtained with should, and commands.

 Explicit Assertions

If an assertion is applicable to an object directly, it is known as the explicit assertion. The

popular explicit assertions include assert/expect.

The command for explicit assertion is as follows:

// test suite

describe('Tutorialspoint', function () {

// it function to identify test

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://accounts.google.com")

 // identify element

 cy.get('h1#headingText').find('span').then(function(e){

 const t = e.text()

 // assertion expect

 expect(t).to.contains('Sign')

 })

 })

 })

Execution Results

The output is given below:

Cypress

 33

The output logs show assertions directly applied to objects with the expect command.

Cypress has Default Assertions which are internally handled and do not require to be

invoked specifically.

Few examples are as follows:

 cy.visit (): Expects the page to show the content with 200 status code.

 cy.request (): Expects the remote server to be available and sends a response.

 cy.contains (): Expects the web element with its properties to be available in DOM.

 cy.get (): Expects the web element to be available in DOM.

 .find (): Expects the web element to be available in DOM.

 .type (): Expects the web element to turn to a type able state.

 .click (): Expects the web element to turn to a clickable state.

 .its (): Expects for a web element property on the existing subject.

Other Cypress assertions

The other Cypress assertions are as follows:

length

It checks the count of elements obtained from the previously chained command.

For example,

cy.get('#txt-fld').should('have.length',5)

value

It checks whether the web element has a certain value.

For example,

Cypress

 34

cy.get(' #txt-fld').should('have.value', 'Cypress')

class

It checks whether the web element possesses a certain class.

For example,

cy.get('#txt-fld'').should('have.class', 'txt')

contain

It checks whether the web element possesses a certain text.

For example,

cy.get('#txt-fld'').should('contain', 'Cypress')

visible

It checks whether the web element is visible.

For example,

cy.get('#txt-fld'').should('be.visible')

exist

It checks whether the web element is available in Document Object Model (DOM).

For example,

cy.get('#txt-fld'').should('not.exist');

css

It checks whether the web element possesses a certain css property.

For example,

cy.get('#txt-fld'').should('have.css', 'display', 'block');

Cypress

 35

The method text can be used to obtain text of a webelement. Assertions can also be added

to verify the text content.

Implementation with text()

Given below is the command for the implementation with text() with regards to

verification:

// test suite

describe('Tutorialspoint', function () {

// it function to identify test

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://accounts.google.com")

 // identify element

 cy.get('h1#headingText').find('span').then(function(e){

 //method text to obtain text content

 const t = e.text()

 expect(t).to.contains('Sign')

 })

 })

 })

Execution Results

The output is as follows:

11. Cypress — Text Verification

Cypress

 36

The output logs show the text Sign in obtained with the text method.

Implementation with text assertions

We can also implement assertions on web element text with the help of the following

command:

 // test suite
describe('Tutorialspoint', function () {

// it function to identify test

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://accounts.google.com")

 // verify text with have.text

 cy.get('h1#headingText').find('span').should('have.text',

'Sign in')

 })

 })

Execution Results

The output is mentioned below:

Cypress

 37

The output logs show the text verification done with should assertion.

Cypress

 38

Cypress is derived from node.js, which is based on JavaScript. Cypress commands are

synchronous in nature, since they are dependent on node server. Asynchronous flow

means that the test step does not depend on its prior step for execution.

There is no dependency and each of the steps is executed as a standalone identity. Though

the test steps are arranged in a sequence, an individual test step does not consider the

outcome of the previous step and simply executes itself.

Example

Following is an example of asynchronous behavior in Cypress:

// test suite

describe('Tutorialspoint', function () {

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://accounts.google.com")

 // identify element

 cy.get('h1#headingText').find('span').should('have.text', 'Sign

in')

 cy.get('h1#headingText').find('span').then(function(e){

 const t = e.text()

 // get in Console

 console.log(t)

 })

 // Console message

 console.log("Tutorialspoint-Cypress")

 })

 })

Execution Results

The output is given below:

12. Cypress — Asynchronous Behavior

Cypress

 39

Promise

Right-click on Test Runner and click on Inspect, and we can verify results in the Console.

Here, Tutorialspoint-Cypress (an earlier step) is logged in the Console before Sign – in

(step added later).

Cypress commands are designed in such a way that every step is executed in sequence

and they are not triggered simultaneously. But, they are lined up one behind another.

Thereby, it makes the flow as synchronous. This is achieved with Promise.

In the above example, console.log is a pure JavaScript statement. It does not have the

ability to line up and wait similar to Cypress commands. Promise allows us to execute

Cypress commands in a serial mode.

Modes in Promise

A Promise has three modes to categorise the state of a command execution. They are as

follows:

 Resolved: This outcome occurs, if the test step runs successfully.

 Pending: This is the outcome, if the test step run result is being awaited.

 Rejected: This is the outcome, if the test step runs unsuccessfully.

A Cypress command gets executed, only if the prior step has been executed successfully

or a resolved promise response is received. Then, the method is used to implement

Promise in Cypress.

Example

Following is an example of Promise in Cypress:

describe('Tutorialspoint Test', function () {

 it('Promise', function (){

 return cy.visit('https://accounts.google.com')

 .then(() => {

 return cy.get('h1#heading');

 })

 })

 })

Cypress

 40

Cypress implementation for Promise is encapsulated and not visible. Thus, it helps to have

a more compact code. Also, we do not have to consider the state of Promise, while

automating the tests.

Implementation without Promise

Following command explains how an implementation can be done without promise in

Cypress:

describe('Tutorialspoint Test', function () {

 it('Without Promise', function (){

 cy.visit('https://accounts.google.com')

 cy.get('h1#heading')

 })

 })

Cypress

 41

XHR is XML HTTP Request. It is an Application Programming Interface (API) which is

available as an object, whose methods send data between a web browser and server. An

object in XHR can request data from a server in the form of a response.

Cypress can not only be used for front end automation, but also can control the network

traffic by directly accessing the XHR objects. Then, it applies the assertions on the objects.

It can mock or stub a response. An XHR details can be seen in the Network tab in the

browser.

XHR response Header is as follows:

The response is as follows:

To make an XHR request, the cy.request() command is used. The method cy.intercept()

is used to redirect the responses to the matching requests.

Implementation of XHR request

Given below is the command to explain the implementation of XHR request in Cypress:

cy.request('https://jsonplaceholder.cypress.io/comments').as('c')

//aliasing request

cy.get('@c').should((response) => {

 expect(response.body).to.have.length(100)

 expect(response).to.have.property('headers')

})

13. Cypress — Working with XHR

Cypress

 42

Cypress can act upon jQuery objects and its methods along with its internal commands.

While Cypress uses the get method to identify a web element, JQuery uses the $() method

for the same purpose.

In Cypress, the command for identifying a web element is as follows:

cy.get('h1#heading')

Whereas in case of jQuery, the command for identification of a web element is as follows:

$('h1#heading')

Cypress is based on JavaScript which is of asynchronous nature. However, Cypress

commands behave synchronously by resolving the Promise internally, which is hidden from

the end user.

Nevertheless, when Cypress acts upon jQuery objects and its methods, the Promise logic

has to be implemented specifically, to make flow synchronous (with the help of method

then).

For instance, while we want to extract the text content of a web element (with jQuery

method - text), we require to implement Promise with the then method.

Promise Implementation in jQuery

Following is the command for the Promise Cypress implementation in jQuery:

// test suite

describe('Tutorialspoint', function () {

// it function to identify test

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://accounts.google.com")

 // Promise implementation with then()

 cy.get('h1#headingText').find('span').then(function(e){

 //method text to obtain text content

 const t = e.text()

 expect(t).to.contains('Sign')

 })

 })

 })

14. Cypress — jQuery

Cypress

 43

In jQuery, an empty collection is returned, if the locator which is provided, does not match

with any of the web elements in DOM.

In order to avoid exceptions, it is recommended to verify the length of the jQuery collection

yielded by $(). The command for the same is as follows:

const e = $('#txt')

if (e.length > 0){

 //proceed

}

However, in case, there are no matching web elements in DOM, the Cypress automatically

goes to the retry mode till the element is available or there is a timeout, as shown below:

cy.get('#txt')

 .then((e) => { //proceed working on element })

The method yields a Promise. Also, the Promise shall be in resolved mode, only if a web

element is matched with the locator. If the Promise is in a reject state, the logic within the

then block will never be executed.

We can access jQuery methods in Cypress, with the following expression:

 Cypress.$('#txt'), where #txt is the locator.

Implementation of jQuery methods

Given below is a command for the identification and execution of the test in Cypress with

jQuery:

// test suite

describe('Tutorialspoint', function () {

// it function to identify test

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://accounts.google.com")

 // access web element with Cypress.$

 cy.request('/').get('h1#headingText').then(function(e){

 Cypress.$(e).find('span')

 const t = e.text()

 cy.log(t)

 })

 })

 })

Cypress

 44

As the above test is executed, if we open the Console (pressing F12), and find for the

required web element, with the expression Cypress.$ ('h1#headingText').text(), we can

verify our test, as shown below:

The log message – Sign –in is obtained from the cy.log command in Cypress.

Cypress

 45

The commands check and uncheck are used to work with checkbox. In the html code, a

checkbox has an input tag and its type attribute has the value as checkbox.

Cypress Commands

The checkbox related Cypress commands is as follows:

 The command used to click all the checkboxes is as follows:

cy.get('input[type="checkbox"]').check()

 The command used to click a checkbox with id check is as follows:

cy.get('#chk').check()

 The command used to click a checkbox with value Cypress is as follows:

cy.get('input[type="checkbox"]').check('Cypress')

 The command used to click the checkboxes with values - Java and Python is

as follows:

cy.get('input[type="checkbox"]').check(['Java', 'Python'])

 The command used to click the checkbox having value Java with options is as

follows:

cy.get('.chk').check('Java', options)

 The command used to click the checkboxes with values – Java and Python

with options is as follows:

cy.get('input[type="checkbox"]').check(['Java', 'Python'], options)

 The command used to click the checkbox having class check with an option

is as follows:

cy.get('.chk').check({force : true})

 The command used to uncheck all the checkboxes is as follows:

cy.get('input[type="checkbox"]').uncheck()

 The command used to uncheck a checkbox with id check is as follows:

cy.get('#chk').uncheck()

15. Cypress — Checkbox

Cypress

 46

 The command used to uncheck the checkbox with value Cypress is as follows:

cy.get('input[type="checkbox"]').uncheck('Cypress')

 The command used to uncheck the checkboxes with values - Java and Python

is as follows:

cy.get('input[type="checkbox"]').uncheck(['Java', 'Python'])

 The command used to uncheck the checkbox having value Java with options

is as follows:

cy.get('.chk').uncheck('Java', options)

 The command used to uncheck the checkboxes with values – Java and Python

with options is as follows:

cy.get('input[type="checkbox"]').uncheck(['Java', 'Python'], options)

 The command used to uncheck the checkbox having class check with an

option is as follows:

cy.get('.chk').uncheck({force : true)

Options in Cypress

The options which are available in Cypress are as follows:

 log – Default value – true: This is used to turn on/off console log.

 timeout – Default value – defaultCommandTimeout(4000ms): This is used

to provide the maximum wait time prior to throwing an error.

 force – Default value – false: This is used to enforce an action.

 scrollBehaviour – Default value – scrollBehaviour(top): This is for the position

of viewport up to which element to be scrolled prior command execution.

 waitForAnimations – Default value – waitForAnimations(true): This is used

to wait for elements to complete animation prior running the commands.

 animationDistanceThreshold - Default value – animationDistanceThreshold

(5): This is for the pixel distance of an element that should be exceeded to qualify

for animation.

Both check/uncheck commands require to be chained with commands that yield DOM

elements and assertions can be applied to these commands.

Implementation of Cypress Commands

The implementation of the commands in Cypress is explained below:

// test suite

Cypress

 47

describe('Tutorialspoint', function () {

// it function to identify test

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://accounts.google.com/signup")

//checkbox with assertion

 cy.get('input[type="checkbox"]').check().should('be.checked')

//identify checkbox with class with assertion

cy.get('.VfPpkd-muHVFf-bMcfAe').uncheck().should('not.be.checked')

 })

 })

Execution Results

The output is mentioned below:

The above results show the checkbox to the left of the Show password, first getting

checked with the check command (verified with assertion-should).

Then, it is unchecked with the uncheck command (also verified with assertion-should).

Cypress

 48

Cypress does not have a specific command to work with tabs. It has a workaround method

in jQuery through which it handles the tabs. In the html code, a link or button opens to a

new tab, because of the attribute target.

If the target attribute has value blank, it opens to a new tab. Cypress uses the jQuery

method removeAttr, which is invoked by the invoke command. The removeAttr deletes

the attribute, which is passed as one of the parameters to the invoke method.

Once the target=blank is removed, then a link/button opens in the parent window. Later

on after performing the operations on it, we can shift back to the parent URL with the go

command.

The Html code for the same is as follows:

Implementation

Given below is the implementation of the use of commands with regards to tabs in

Cypress:

describe('Tutorialspoint', function () {

 // test case

 it('Scenario 1', function (){

// url launch

 cy.visit("https://the-internet.herokuapp.com/windows")

// delete target attribute with invoke for link

cy.get('.example > a')

.invoke('removeAttr', 'target').click()

// verify tab url

 cy.url()

.should('include', 'https://the-internet.herokuapp.com/windows/new')

// shift to parent window

 cy.go('back');

 });

});

Execution Results

16. Cypress — Tabs

Cypress

 49

The output is as follows:

The output logs show the deletion of the target attribute and launch of the new tab within

the parent window.

Cypress

 50

The command select is used to work with static dropdown. In the html code, a dropdown

has a select tag and the dropdown elements are represented by option tagname.

Dropdown Cypress Commands

The dropdown related Cypress commands are as follows:

 The command used to choose the option Cypress is as follows:

cy.get('select').select('Cypress')

 The command that chooses options Tutorialspoint and JavaScript is as

follows:

cy.get('select').select(['Tutorialspoint', 'JavaScript'])

 The command which can choose a value of a dropdown option along with

options (to modify default characteristics) is as follows:

cy.get('select').select('option1', options)

 The command that chooses the multiple values with options is as follows:

cy.get('select').select(['option1', 'option2'], options)

Options for dropdown in Cypress

The options which are available for the dropdown in Cypress are as follows:

 log – Default value – true: This is used to turn on/off the console log.

 timeout – Default value – defaultCommandTimeout(4000): This is used to

provide the maximum wait time for the selection prior to throwing an error.

 force – Default value – false: This is used to enforce an action.

Assertion can be applied to the select commands in Cypress.

Let us make an attempt to select the option India from the dropdown having value as 99

in the html code.

17. Cypress — Dropdown

Cypress

 51

Implementation

The implementation of the dropdown commands to select the option India in Cypress is

explained below:

// test suite

describe('Tutorialspoint', function () {

// it function to identify test

 it('Scenario 1', function (){

 // test step to launch a URL

 cy.visit("https://register.rediff.com/register/register.php")

 //select option India with value then verify with assertion

 cy.get('select[id="country"]').select('99').should('have.value', '99')

 })

 })

Execution Results

The output is stated below:

Cypress

 52

The output shows that the Country dropdown selects the option India (in the html code,

this option is identified with the value as 99).

Cypress

 53

Cypress can work with alerts by default. The pop-up can be an alert or confirmation pop-

up. Cypress is designed in such a way that it shall always click on the OK button on the

pop-up. Moreover, Cypress has the ability to fire the browser events.

An alert is triggered by window:alert event. This is by default handled by Cypress and

the OK button on the alert gets clicked, without being visible during execution.

However, the execution logs will show the presence of the alert.

Implementation Alerts

The implementation of alerts in Cypress is given below:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

// launch url

cy.visit("https://register.rediff.com/register/register.php");

// click submit

cy.get('input[type="submit"]').click();

 });

 });

Execution Results

The output is as follows:

18. Cypress — Alerts

Cypress

 54

The alert message gets displayed on the Cypress execution logs.

Cypress has the ability to fire the window:alert event by utilising the method on. Then, we

can verify the alert text.

However, this event shall happen in the back end and will not be visible during the

execution.

Implementation Alert text verification

Given below is the implementation for the alert text verification in Cypress:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

// launch url

cy.visit("https://register.rediff.com/register/register.php");

// click submit

cy.get('input[type="submit"]').click();

// fire event with method on

cy.on('window:alert',(t)=>

{

 //assertions

 expect(t).to.contains('Your full name');

 })

 });

Cypress

 55

 });

Execution Results

The output is mentioned below:

The output logs show the successful verification of the alert text, produced by firing the

alert event by Cypress.

For a confirmation pop-up, the browser event window:confirm is triggered. Just like alert

pop-ups, Cypress can fire this event with the method on and clicks on the OK button by

default.

Example

Let us have a look at the below example. Here, on clicking the Click for JS Confirm

button, a confirmation pop up gets displayed.

Cypress

 56

The following confirmation pop-up with OK and Cancel buttons getting displayed.

On clicking the OK button, the following is displayed:

You clicked: Ok

An image like the one given below will be displayed:

On clicking the Cancel button, the following is displayed below Result:

You clicked: Cancel

An image like the one given below will be displayed:

Cypress

 57

Implementation Confirmation verification

Given below is an implementation for the confirmation verification of alerts in Cypress:

describe('Tutorialspoint Test', function () {

 // test case

 it("Scenario 1", function () {

//URL launched

 cy.visit("https://the-internet.herokuapp.com/javascript_alerts")

 //fire confirm browser event and accept

 cy.get(':nth-child(2) > button').click()

 cy.on("window:confirm", (t) => {

 //verify text on pop-up

 expect(t).to.equal("I am a JS Confirm");

 });

 });

});

Execution Results

The output is stated below:

Cypress

 58

The output logs show the successful verification of the confirmation text, produced by

firing the confirm event by Cypress.

Implementation Cancel click

The implementation of cancel click on confirmation pop up in Cypress is as follows:

describe('Tutorialspoint Test', function () {

 // test case

 it("Scenario 1", function () {

 // URL launched

 cy.visit("https://the-internet.herokuapp.com/javascript_alerts")

 //fire confirm browser event

 cy.on("window:confirm", (s) => {

 return false;

 });

 // click on Click for JS Confirm button

 cy.get(':nth-child(2) > button').click()

 // verify application message on Cancel button click

 cy.get('#result').should('have.text', 'You clicked: Cancel')

 });

});

Execution Results

The output is given below:

Cypress

 59

The output logs show the successful verification of the text You clicked: Cancel, which

is produced on clicking the Cancel button on the confirmation pop up.

Cypress

 60

Cypress does not have a specific command to work with child windows. It has a

workaround method in jQuery through which it handles the child windows. In the html

code, a link or button opens to a child window, because of the attribute target.

If the target attribute has value blank, it opens to a child window. Cypress uses the jQuery

method removeAttr, which is invoked by the invoke command in Cypress. The removeAttr

deletes the attribute, which is passed as one of the parameters to the invoke method.

Once the target=blank is removed, then a link/button opens in the parent window and

after performing operations on it, we can shift back to the parent URL with the go

command.

The Html code for opening a child window in Cypress is as follows:

Implementation

Given below is an implementation of the commands for child windows in Cypress:

describe('Tutorialspoint', function () {

 // test case

 it('Scenario 1', function (){

// url launch

 cy.visit("https://the-internet.herokuapp.com/windows")

// delete target attribute with invoke for link

cy.get('.example > a')

.invoke('removeAttr', 'target').click()

// verify child window url

 cy.url()

.should('include', 'https://the-internet.herokuapp.com/windows/new')

// shift to parent window

 cy.go('back');

 });

});

Execution Results

19. Cypress — Child Windows

Cypress

 61

The output is as follows:

The output logs show the deletion of the target attribute and launching of the child window

within the parent window.

Cypress

 62

Cypress can handle the hidden elements. There are occasions, when the submenus get

displayed only on hovering over the main menu. These submenus are initially made hidden

with the Cascading Style Sheets (CSS) property display:none.

For handling the hidden elements, Cypress takes the help of the jQuery method show. It

has to be invoked with the help of the Cypress command (invoke['show']).

For example, on hovering over the Sign in menu, the Sign in button gets displayed, as

shown below:

On moving the mouse out of the Sign in menu, the Sign in button gets hidden, as displayed

below:

Implementation

The implementation of the hidden elements with jQuery show method is as follows:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

 // launch URL

 cy.visit("https://www.amazon.com/");

 // show hidden element with invoke

 cy.get('#nav-flyout-ya-signin').invoke('show');

 //click hidden element

 cy.contains('Sign').click();

20. Cypress — Hidden Elements

Cypress

 63

 });

 });

Execution Results

The output is given below:

The execution logs show the hidden elements represented by an icon at the right of the

steps.

Cypress has another technique for handling hidden elements.

For example, to click a hidden element we can use the Cypress command click and pass

the option {force : true} as a parameter to it - click({ force: true }).

This modifies the hidden characteristics of the hidden element and we can click it.

Implementation with click

Given below is the implementation with click having option in Cypress:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

 // launch URL

 cy.visit("https://www.amazon.com/");

 //click hidden element

 cy.contains('Sign').click({force:true});

 });

 });

Cypress

 64

Execution Results

The output is mentioned below:

The execution logs show the hidden element clicked (Sign in) and we are navigated to the

next page.

Cypress

 65

The earlier versions of Cypress were unable to access the elements inside frames. But, the

recent versions have a solution for frame.

To work with frames, first, we have to install a Cypress plugin with the command given

below:

 npm install –D cypress-iframe

The screen which will be displayed is given below:

For the frame implementation in Cypress, we have to add the statement import 'cypress-

iframe' in the code. A tagname called frame/iframe is used to represent frames in the

html code.

The following screen will appear on your computer:

Cypress command frameload is used to move the focus from the main page to the frame.

Once the focus is shifted, we can interact with the elements inside the frame.

This is done with the cy.iframe method.

Implementation

Given below is the implementation of the Cypress command for frames, by using the

cy.iframe method:

import 'cypress-iframe'

describe('Tutorialspoint Test', function () {

21. Cypress — Frames

Cypress

 66

 // test case

 it('Test Case6', function (){

 // launch URL

 cy.visit("https://jqueryui.com/draggable/");

 // frame loading

 cy.frameLoaded('.demo-frame');

 //shifting focus

 cy.iframe().find("#draggable").then(function(t){

 const frmtxt = t.text()

 //assertion to verify text

 expect(frmtxt).to.contains('Drag me around');

 cy.log(frmtxt);

 })

 });

 });

Execution Results

The output is as follows:

The execution logs show the accessing elements inside a frame and the text grabbed within

it.

Cypress

 67

Cypress cannot handle more than one frame in a page.

Also, for frame Intellisense to Cypress, we can add /// <reference types = "Cypress-

iframe"/> to the code.

Cypress

 68

Cypress is capable of handling the web tables. A table is basically of two types, which are

dynamic and static. A static table has a fixed number of columns and rows unlike a dynamic

table.

In an html code, a table is represented by table tagname, while rows are represented by

tr, and columns by td.

 To access the rows, the Cypress command is as follows:

 cy.get("tr")

 To access the columns, the Cypress command is as follows:

 cy.get("td") or cy.get("tr td")

 To access a particular column, the CSS expression should be as follows:

 td:nth-child(column number)

 To iterate through the rows/columns of the table, the Cypress command each

is used.

In Cypress, we have the command next to shift to the immediate following sibling

element. This command has to be chained with get command. The command prev is used

to shift to the immediate preceding sibling element.

The Html structure of a table is given below:

Example

Let us take an example of a table, and verify the content of the second column TYPE (Open

Source) corresponding to the value Selenium, which is in the first column AUTOMATION

TOOL.

The following screen will appear on your computer:

22. Cypress — Web Tables

Cypress

 69

Implementation

Given below is the implementation of the Cypress commands related to tables:

 describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

 //URL launch

 cy.visit("https://sqengineer.com/practice-sites/practice-tables-selenium/")

 // identify first column

 cy.get('#table1> tbody > tr > td:nth-child(1)').each(($elm, index, $list)

=> {

 // text captured from column1

 const t = $elm.text();

 // matching criteria

 if (t.includes('Selenium')){

 // next sibling captured

 cy.get('#table1 > tbody > tr > td:nth-child(1)')

 .eq(index).next().then(function(d)

 {

 // text of following sibling

 const r = d.text()

 //assertion

 expect(r).to.contains('Commercial');

 })

 }

Cypress

 70

 })

 });

 });

Execution Results

The output is as follows:

The execution logs show that the value in the column TYPE is captured as Open Source.

This happens as it is the immediate following sibling to the element Selenium (first column)

which appears in the same row.

Cypress

 71

Cypress can handle hidden elements. There are occasions when submenus get displayed

only on hovering over the main menu. These submenus are initially made hidden with the

CSS property display:none.

For handling hidden elements, Cypress takes the help of the jQuery method show. It has

to be invoked with the help of the Cypress command (invoke['show']).

For example, on hovering over the Mouse Hover button, the Top and Reload buttons get

displayed, as shown below:

On moving the mouse out of the Mouse Hover button, the Top and Reload buttons get

hidden, as shown below:

Implementation with jQuery show method

Given below is the implementation with jQuery show method in Cypress:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

 // launch URL

23. Cypress — Mouse Actions

Cypress

 72

 cy.visit("https://learn.letskodeit.com/p/practice");

 // show hidden element with invoke

 cy.get('div.mouse-hover-content').invoke('show');

 //click hidden element

 cy.contains('Top').click();

 });

 });

Execution Results

The output is as follows:

The execution logs show the hidden element – Top button represented by an icon at the

right of the steps.

Cypress

 73

Cypress handles cookies with the methods Cookies.preserveOnce() and

Cookies.defaults(). The method Cookies.debug() produces logs to the console, if there

are any changes to the cookies.

By default, Cypress removes all cookies prior to each test execution. We can utilise

Cypress.Cookies.preserveOnce() to preserve the cookies with their names to be used

for other tests.

Syntax

The syntax for the commands related to the cookies in Cypress are as follows:

This will produce console logs, if cookie values are configured or cleared.

Cypress.Cookies.debug(enable, option)

Here,

 enable – if debug of cookie should be enabled.

 option – configure default values for cookies, for example, preserve cookies.

 Cypress.Cookies.debug(true) // logs will generate if cookies are

modified

 cy.clearCookie('cookie1')

 cy.setCookie('cookie2', 'val')

To reduce the level of logging.

Cypress.Cookies.debug(true, { verbose: false })

Cypress.Cookies.debug(false) // logs will not generate if cookies are modified

The syntax given below will preserve the cookies and they will not be cleared prior

execution of another test.

Cypress.Cookies.preserveOnce(cookie names...)

This syntax is used to modify global configuration and to maintain a group of cookies that

are preserved for a test. Any modification will be applicable for that particular test.

(maintained in cypress/support/index.js file and are loaded prior to test execution).

Cypress.Cookies.defaults(option)

 Cypress.Cookies.defaults({

 preserve: 'cookie1'

 })

24. Cypress — Cookies

Cypress

 74

Here, the cookie named cookie1 will not be cleared before running the test.

Cookie Methods

Some of the cookie methods in Cypress are as follows:

 cy.clearCookies(): It removes all the cookies from present domain and

subdomain.

 cy.clearCookie(name): It removes a cookie from the browser by name.

 cy.getCookie(name): It is used to obtain a cookie from the browser by name.

 cy.getCookies(): It is used to obtain all the cookies.

 cy.setCookie(name): It can configure a cookie.

Implementation

Given below is the implementation of the cookie methods in Cypress:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

 // launch the application

 cy.visit("https://accounts.google.com");

 // enable cookie logging

 Cypress.Cookies.debug(true)

 //set cookie

 cy.setCookie('cookie1', 'value1')

 //get cookie by name and verify value

 cy.getCookie('cookie1').should('have.property', 'value', 'value1')

 //clear cookie by name

 cy.clearCookie('cookie')

 //get all cookies

 cy.getCookies()

 //clear all cookies

 cy.clearCookies()

 //verify no cookies

 cy.getCookies().should('be.empty')

 });

 });

Execution Results

The output is mentioned below:

Cypress

 75

Cypress

 76

The Get and Post methods are a part of the Application Programming Interface (API)

testing, which can be performed by Cypress.

Get Method

To perform a Get operation, we shall make a HTTP request with the cy.request() and

pass the method Get and URL as parameters to that method.

The status code reflects, if the request has been accepted and handled correctly. The code

200(means ok) and 201(means created).

Implementation of Get

The implementation of Get method in Cypress is explained below:

describe("Get Method", function(){

 it("Scenario 2", function(){

 cy.request("GET", "https://jsonplaceholder.cypress.io/comments", {

 }).then((r) => {

 expect(r.status).to.eq(200)

 expect(r).to.have.property('headers')

 expect(r).to.have.property('duration')

 });

 })

})

Execution Results

The output is as follows:

25. Cypress — Get and Post

Cypress

 77

Post Method

While using the Post method, we are actually sending information. If we have a group of

entities, we can append new ones at the end, with the help of Post.

To perform a Post operation, we shall make a HTTP request with the cy.request() and

pass the method Post and URL as parameters to that method.

Implementation of Post

Given below is an implementation of Post method in Cypress:

describe("Post Method", function(){

 it("Scenario 3", function(){

 cy.request('https://jsonplaceholder.cypress.io/users?_limit=1')

 .its('body.0') // yields the first element of the returned list

 // make a new post on behalf of the user

 cy.request('POST', 'https://jsonplaceholder.cypress.io/posts', {

 title: 'Cypress',

 body: 'Automation Tool',

 })

 })

 });

Execution Results

The output is given below:

Cypress

 78

To perform file upload task in Cypress, we have to first install a plugin with the command

mentioned below:

 npm install –dev cypress-file-upload

The following screen will appear on your computer:

Once the installation is done, we have to add the statement import 'cypress-file-upload' in

the command.js file. This file resides inside the support folder within our Cypress project.

Also, we shall add the file that we want to upload within the fixtures folder (Picture.png

file). The following screen will be displayed:

To upload a file, we have to use the Cypress command, attachFile and pass the path of

the file to be uploaded as a parameter to it.

Implementation

The implementation of the commands for uploading a file in Cypress is as follows:

describe('Tutorialspoint Test', function () {

 // test case

 it('Test Case6', function (){

 //file to be uploaded path in project folder

26. Cypress — File Upload

Cypress

 79

 const p = 'Picture.png'

 // launch URL

 cy.visit("https://the-internet.herokuapp.com/upload")

 //upload file with attachFile

 cy.get('#file-upload').attachFile(p)

 //click on upload

 cy.get('#file-submit').click()

 //verify uploaded file

 cy.get('#uploaded-files').contains('Picture')

 });

 });

 Execution Results

The output is as follows:

The execution logs show that the file Picture.png got uploaded and the file name got

reflected on the page.

Cypress

 80

Cypress data driven testing is achieved with the help of fixtures. Cypress fixtures are

added to maintain and hold the test data for automation.

The fixtures are kept inside the fixtures folder (example.json file) in the Cypress project.

Basically, it helps us to get data input from external files.

Cypress fixtures folder can have files in JavaScript Object Notation (JSON) or other formats

and the data is maintained in "key:value" pairs.

All the test data can be utilised by more than one test. All fixture data has to be declared

within the before hook block.

Syntax

The syntax for Cypress data driven testing is as follows:

cy.fixture(path of test data)

cy.fixture(path of test data, encoding type)

cy.fixture(path of test data, opts)

cy.fixture(path of test data, encoding type, options)

Here,

 path of test data is the path of test data file within fixtures folder.

 encoding type: Encoding type (utf-8, asci, and so on) is used to read the file.

 Opts: Modifies the timeout for response. The default value is 30000ms. The wait

time for cy.fixture(), prior throws an exception.

Implementation in example.json

Given below is the implementation of data driven testing with example.json in Cypress:

27. Cypress — Data Driven Testing

Cypress

 81

{

 "email": "abctest@gmail.com",

 "password": "Test@123"

}

Implementation of Actual Test

The implementation of actual data driven testing in Cypress is as follows:

describe('Tutorialspoint Test', function () {

 //part of before hook

 before(function(){

 //access fixture data

 cy.fixture('example').then(function(signInData){

 this.signInData = signInData

 })

 })

 // test case

 it('Test Case1', function (){

 // launch URL

 cy.visit("https://www.linkedin.com/")

 //data driven from fixture

 cy.get('#session_key ')

 .type(this.signInData.email)

 cy.get('# session_password').type(this.signInData.password)

 });

 });

Execution Results

The output is as follows:

Cypress

 82

The output logs show the values abctest@gmail.com and Test@123 being fed to the Email

and Password fields respectively. These data have been passed to the test from the

fixtures.

Cypress

 83

Cypress can handle prompt pop-up windows, where users can input values. A prompt has

a text field, where the input is taken. To handle a prompt pop-up, cy.window() method is

used.

It obtains the value of the object of the prompt (remote window). In a confirmation/alert

pop-up, we have to fire a browser event. But for prompt pop-up, we have to use cy.stub()

method.

Example

Let us look at the below example, on clicking the Click for JS Prompt button, a prompt pop

up gets displayed, as shown below:

The following prompt with the user input field gets displayed. Tutorialspoint is entered in

the prompt pop-up, as shown below.

You entered: Tutorialspoint gets displayed under Result.

This can be seen in the screen displayed below:

28. Cypress — Prompt Pop-up Window

Cypress

 84

Implementation

Given below is an implementation of the commands for displaying prompt pop-up windows

in Cypress:

 describe('Tutorialspoint Test', function () {

 // test case

 it("Scenario 1", function () {

 //URL launch

 cy.visit("https://the-internet.herokuapp.com/javascript_alerts")

 //handling prompt alert

 cy.window().then(function(p){

 //stubbing prompt window

 cy.stub(p, "prompt").returns("Tutorialspoint");

 // click on Click for JS Prompt button

 cy.get(':nth-child(3) > button').click()

 // verify application message on clicking on OK

 cy.get('#result').contains('You entered: Tutorialspoint')

 });

 });

Execution Results

Cypress

 85

The output is as follows:

The output logs show the successful verification of the text.

You entered: Tutorialspoint, is produced on clicking OK button on prompt pop up. Also,

the stub applied on the prompt window is visible on the output log.

Cypress

 86

Cypress Dashboard Service has to be set up to create a link between Cypress tests running

in our system and the dashboard which is hosted on the cloud.

Features

The features of Cypress Dashboard are explained below:

 It provides data on the total number of passed, failed and skipped test cases.

 The stack trace and screenshots of the failed tests are available.

 The video of test execution is available.

 Management of test data, framework and their access is possible.

 The usage trends in the organization is provided.

Setup Cypress Dashboard

To set up the process, first, we should go to the Runs tab in the Cypress Test Runner

window. Then, click on Connect to Dashboard. The following screen will appear:

We shall get various options of logging on to the Dashboard, as shown below:

29. Cypress — Dashboards

Cypress

 87

After successful sign in, we shall get the success message. Click on Continue.

Enter the project name, owner and users, who can see the project.

Then, click on Set up project.

Cypress

 88

Cypress shall then give the following suggestions:

 project Id

 unique project key (in form of command to be executed in terminal)

The projectId obtained from the Cypress suggestion should match with the project id

available in the cypress.json file within the project folder.

Cypress

 89

Next, we have to run the below mentioned command as suggested by Cypress:

node_modules/cypress/bin/cypress run --record --key <project key>

The screen given below will appear:

Once the execution is done, we have to open the Runs tab of the Test Runner. It has the

information on platform, browser, and duration of the tests.

The test records shall be visible. Click on a record.

The record is opened in a browser, with the test result Overview (count of passed, failed,

pending, skipped), as shown below.

Cypress

 90

In the Specs tab, we should have the details of each test and its result.

Additionally, there are features like output, failed test screenshot, videos, and so on.

Cypress

 91

Cypress can work on screenshots and videos. First, let us understand how Cypress can

help in capturing the screenshot.

Screenshots

We can capture both the complete page and particular element screenshot with the

screenshot command in Cypress.

In addition to that Cypress has the in-built feature to capture the screenshots of failed

tests. To capture a screenshot of a particular scenario, we use the command screenshot.

Screenshot Implementation

The implementation of the screenshot commands in Cypress is as follows:

describe('Tutorialspoint Test', function () {

 // test case

 it("Scenario 1", function () {

//URL launched

 cy.visit("https://the-internet.herokuapp.com/javascript_alerts")

 //complete page screenshot with filename - CompletePage

 cy.screenshot('CompletePage')

//screenshot of particular element

 cy.get(':nth-child(2) > button').screenshot()

 });

});

Execution Results

The output is given below:

The execution logs show that complete full page screenshot captured (with filename as

CompletePage.png) and also screenshot a particular element (Click for JS Confirm).

30. Cypress — Screenshots and Videos

Cypress

 92

These screenshots got captured inside the screenshots folder (in the plugins folder) within

the project. The location where the screenshots got captured, can be modified by changing

the Global configurations.

CompletePage.png file created for full page image.

The screenshot of the button Click for JS Confirm got captured.

In the Test Runner Settings tab, the parameter screenshotOnRunFailure, set to true value

by default. Due to which, the screenshots are always captured for failure tests.

Also, the screenshotsFolder parameter has the value cypress/screenshots value. So, the

screenshots are captured within the screenshots folder.

Cypress

 93

To disable feature of capturing failed screenshots, we have to add the below values in the

cypress.json file:

Cypress.Screenshot.defaults({

 screenshotOnRunFailure: false

})

Videos

The video capturing of Cypress is turned on for tests, by default. They are stored in the

videos folder within the project.

Once a Cypress test is run with the below mentioned command:

node_modules/.bin/cypress run

We get the console message along with the location of the video, compression details, and

so on:

Cypress

 94

We get the corresponding video in the same location within the project.

To disable the video capture feature, we have to add the below value in the cypress.json

file:

 {

 "video": false

 }

Cypress

 95

Cypress has a very good debugging feature, where we can time travel and see what has

actually happened during the test execution. This can be done by hovering the mouse over

the Test Runner logs.

As we move through the steps in the Test Runner window, the elements get highlighted.

We can also use the Cypress command pause. This pauses the execution, during which

we can debug the previous steps. After that, we can again resume execution.

Implementation

The implementation of commands for debugging in Cypress is as follows:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

 // launch the application

 cy.visit("https://accounts.google.com");

 // enable cookie logging

 Cypress.Cookies.debug(true)

 cy.getCookies

 //pause execution

 cy.pause()

 cy.setCookie('cookie1', 'value1')

 });

 });

Execution Results

The output is as follows:

31. Cypress — Debugging

Cypress

 96

The output logs show that the execution has been paused (denoted by Paused button).

Then again, we can resume it after debugging the previous steps by clicking the Resume

button (appear beside Paused button).

The output logs now have all the steps executed after resume from pause.

If we open the Developer Console (pressing F12) on the browser, and select a step from

the Test Runner, the Console shall show the Command used and the valued Yielded.

For example, for the setCookie step, the Console shows Command: setCookie and Yielded

shows the cookie name: cookie1 and value: value1.

Cypress

 97

Cypress custom commands are described by users and not the default commands from

Cypress. These customized commands are used to create the test steps that are repeated

in an automation flow.

We can add and overwrite an already pre-existing command. They should be placed in the

commands.js file within the support folder present in the Cypress project.

Syntax

The syntax for the custom commands in Cypress is as follows:

Cypress.Commands.add(function-name, func)

Cypress.Commands.add(function-name, opts, func)

Cypress.Commands.overwrite(function-name, func)

Here,

 function-name is the command that is being added/overwritten.

 func is the function passing that gets arguments passed to command.

 opts is used to pass an option to describe the implicit characteristics of custom

command. It is also used to determine how to handle a prior yielded subject (only

applicable to Cypress.Commands.add()) and default value of option is false. The

option prevSubject accepts false to ignore prior subjects, accepts true to accept

prior subject and accepts optional to either begin a chain or utilize a pre-existing

chain. An option accepts string, array, or Boolean.

32. Cypress — Custom Commands

Cypress

 98

Implementation of custom command

Given below is the implementation of custom command in commands.js

Cypress.Commands.add("userInput", (searchTxt) => {

 //to input search text in Google and perform search

 cy.get("input[type='text']").type(searchTxt);

 cy.contains("Google Search").click();

});

Implementation of Actual Test

Given below is the implementation of actual test in Cypress with custom command:

describe('Tutorialspoint Test', function () {

 // test case

 it('Test Case 6', function (){

 // launch the application

 cy.visit("https://www.google.com/");

 //custom parent command

 cy.userInput('Java')

 });

 });

Execution Results

The output is as follows:

Cypress

 99

The output logs show the custom command – userInput (having get, type and click

commands) getting executed.

It is recommended that a custom command should not be too lengthy. It should be brief,

because, adding too many actions within a custom command tends to show the execution.

Cypress

 100

Cypress fixtures are added to maintain and hold the test data for automation. The fixtures

are kept inside the fixtures folder (example.json file) in the Cypress project. Basically, it

helps us to get the data input from external files.

Cypress fixtures folder can have files in JSON or other formats and the data is maintained

in "key:value" pairs.

All the test data can be utilised by more than one test. All fixture data has to be declared

within the before hook block.

Syntax

The syntax for Cypress data driven testing is as follows:

cy.fixture(path of test data)

cy.fixture(path of test data, encoding type)

cy.fixture(path of test data, opts)

cy.fixture(path of test data, encoding type, options)

Here,

 path of test data is the path of test data file within fixtures folder.

 encoding type: Encoding type (utf-8, asci, and so on) is used to read the file.

 Opts: Modifies the timeout for response. The default value is 30000ms. The wait

time for cy.fixture(), prior throws an exception.

Implementation in example.json

Given below is the implementation of data driven testing with example.json in Cypress:

33. Cypress — Fixtures

Cypress

 101

{

 "fullName": "Robert",

 "number": "789456123"

}

Implementation of Actual Test

The implementation of actual data driven testing in Cypress is as follows:

describe('Tutorialspoint Test', function () {

 //part of before hook

 before(function(){

 //access fixture data

 cy.fixture('example').then(function(regdata){

 this.regdata=regdata

 })

 })

 // test case

 it('Test Case1', function (){

 // launch URL

 cy.visit("https://register.rediff.com/register/register.php")

 //data driven from fixture

 cy.get(':nth-child(3) > [width="185"] > input')

 .type(this.regdata.fullName)

 cy.get('#mobno').type(this.regdata.number)

 });

 });

Execution Results

The output is as follows:

The output logs show the values Robert and 789456123 being fed to the Full Name and

Mobile No. fields respectively. This data has been passed to the test from the fixtures.

Cypress

 102

We can define environment variables that can be globally declared for the test automation

framework and all the test cases can access it. This type of customized environment

variable can be stored in the cypress.json file within our project.

Since, a customized variable is not exposed by default configurations from Cypress, we

have to mention the key as "evn" in the cypress.json file and then, set the value.

Also, to access this variable in the actual test, we have to use the Cypress.env and pass

the value declared in the json file.

Implementation in cypress.json

The implementation of commands for environment variables in cypress.json format is as

follows:

{

 "projectId": "fvbpxy",

 "env" :

 {

 "url" : "https://www.google.com/"

 }

}

Implementation of Actual Test

The implementation of actual test for environmental variables in Cypress is as follows:

describe('Tutorialspoint Test', function () {

 // test case

 it('Scenario 1', function (){

34. Cypress — Environment Variables

Cypress

 103

 // launch application from environment variable

 cy.visit(Cypress.env('url'))

 cy.getCookies()

 cy.setCookie('cookie1', 'value1')

 });

 });

Execution Results

The output is as follows:

The output logs show the URL launched which has been set as a customized environment

variable from the cypress.json file.

Configure Environment Variables

We can configure or modify the environment values from the command line with the flag

--env.

To run a particular file (for example: Test1.js) with URL: https://accounts.google.com in

a headed mode, the command shall be as follows:

./node_modules/.bin/cypress run --spec cypress/integration/examples/Test1.js --

env url=https://accounts.google.com –headed

If we have a value set for the environment variable url in the cypress.json file, which is

different from the value set from the command line, Cypress shall give preference to the

value set from the command line.

Cypress

 104

Cypress Hooks are used to carry out the certain operations prior/post every/each test.

Some of the common hooks are as follows:

 before: It is executed, once the prior execution of any tests within a describe block

is carried out.

 after: It is executed, once the post execution of all the tests within a describe block

is carried out.

 beforeEach: It is executed prior to the execution of an individual, it blocks within

a describe block.

 afterEach: It is executed post execution of the individual, it blocks within a

describe block.

Implementation

The implementation of commands for the Cypress Hooks is explained below:

describe('Tutorialspoint', function() {

 before(function() {

 // executes once prior all tests in it block

 cy.log("Before hook")

 })

 after(function() {

 // executes once post all tests in it block

 cy.log("After hook")

 })

 beforeEach(function() {

 // executes prior each test within it block

 cy.log("BeforeEach hook")

 })

 afterEach(function() {

 // executes post each test within it block

 cy.log("AfterEac hook")

 })

 it('First Test', function() {

 cy.log("First Test")

 })

35. Cypress — Hooks

Cypress

 105

 it('Second Test', function() {

 cy.log("Second Test")

 })

 })

Execution Results

The output is mentioned below:

The output logs show that the first executed step is the BEFORE ALL.

The last executed step is the AFTER ALL. Both of them ran only once.

The step executed under BEFORE EACH ran twice (before each TEST BODY).

Also, step executed under AFTER EACH ran twice (after each TEST BODY).

Both the it blocks are executed in order, in which they are implemented.

TAG

Apart from hooks, Cypress has tags - .only and .skip.

Cypress

 106

While the .only tag is utilised to execute the it block to which it is tagged, the .skip tag is

utilised to exclude the it block to which it is tagged.

Implementation with .only

The implementation of .only tag in Cypress is as follows:

describe('Tutorialspoint', function()

 //it block with tag .only

 it.only('First Test', function() {

 cy.log("First Test")

 })

 //it block with tag .only

 It.only('Second Test', function() {

 cy.log("Second Test")

 })

 it('Third Test', function() {

 cy.log("Third Test")

 })

})

Execution Results

The output is given below:

The output logs show that the it blocks (First and Second Test) with the .only tags only

got executed.

Implementation with .skip

The implementation of .skip tag in Cypress is as follows:

Cypress

 107

describe('Tutorialspoint', function()

 it('First Test', function() {

 cy.log("First Test")

 })

 it('Second Test', function() {

 cy.log("Second Test")

 })

 //it block with tag .skip

 it.skip('Third Test', function() {

 cy.log("Third Test")

 })

})

Execution Results

The output is as follows:

The output logs show that the it block (Third Test) with the .skip tag got skipped from the

execution.

Cypress

 108

Cypress configurations consist of some key-value pairs that are applicable to all tests

within a framework. Cypress default configurations are available under the Settings tab->

Configuration (expand it) in the Test Runner window.

If we look further down in the same window, we shall have the existing values of multiple

configurations given by Cypress like the timeouts, environment variables, folder path, and

so on.

It is displayed below:

36. Cypress — Configuration of JSON File

Cypress

 109

There are few more configurations related to JavaScript Object Notation (JSON) file in

Cypress and they are as follows:

Override Default values

To override the default configurations from the cypress.json file, we have to specify the

key-value pairs.

Cypress

 110

Implementation in cypress.json

The implementation for overriding the default values for JSON file is as follows:

 {

 "baseUrl" : "https://www.google.com/"

 }

Here, the key is baseUrl and the value is https://www.google.com/. Once the tests are

run again, the changes are reflected in the global configurations, as shown below:

Implementation of Actual Test

The implementation of actual test for overriding default values of the JSON file is as

follows:

describe('Tutorialspoint', function () {

 // test case

https://www.google.com/

Cypress

 111

 it('First Test', function (){

 // launch application from configuration

 cy.visit("/")

 });

 });

Execution Results

The output is as follows:

The execution logs show that the baseUrl has been obtained from the cypress.json file and

it is applicable to all tests within the framework.

Override Default configurations

We can override the default configurations from the test scripts, which become

applicable to an individual test step, within the test case and not to the complete

framework.

This is done with the help of the config command in Cypress.

For example, if we want to increase the default timeout for a particular test step,

implementation shall be as follows:

//set default time out to nine seconds from following steps in test

Cypress.config('defaultCommandTimeout',9000)

landPage.selectUser().click()

Simultaneously if the defaultCommandTimeout value is set to seven seconds in the

cypress.json file, then Cypress shall give preference to the timeout applied to the test

step(i.e nine seconds).

Finally, it gives preference to the default configurations.

Disable Overriding Default configurations

We can disable the feature to override the default configurations from the cypress.json.

The configuration in cypress.json is as follows:

 {

 "defaultCommandTimeout" : "9000"

Cypress

 112

 }

To disable the above configuration, run the below mentioned command:

 npx cypress open --config-file false

After running the above command, the Settings tab of the Test Runner window will show

the config flag set to false.

Also, defaultCommandTimeout is set to four seconds, which is set by the default

configuration and not overridden by cypress.json value of nine seconds.

Cypress

 113

Cypress is bundled with Mocha. So, any reports that can be generated for Mocha, can also

be utilised with Cypress. In addition to that Cypress has other third party reporters like

JUnit and teamcity.

Mochawesome Report

The Mochawesome report is one of the most important reports in Cypress.

 To install mochawesome, run the command given herewith:

npm install mochawesome --save-dev

The following screen will appear on your computer:

 To install mocha, run the command mentioned below:

npm install mocha --save-dev

The following screen will appear on your computer:

 To merge mochawesome json reports, run the following command:

npm install mochawesome-merge --save-dev

The following screen will appear on your computer:

All these packages after installation, should get reflected on the package.json file.

37. Cypress — Reports

Cypress

 114

To merge multiple reports in a single report, run the following command:

npm run combine-reports

Configurations in cypress.json file

In the cypress.json file, we can set the following configurations for the mochawesome

reports:

 overwrite: If its value is set to false, there should not be any overwriting from the

prior generated reports.

 reportDir: It is the location, where reports are to be saved.

 quiet: If its value is set to true, there should not be any Cypress related output.

Only the mochawesome output has to be printed.

 html: If its value is set to false, there should not be any generation of html reports

after execution.

 json: If its value is set to true, a json file with execution details will be generated.

Implementation in cypress.json

The implementation for mochawesome report in cypress.json is as follows:

{

 "reporter": "mochawesome",

 "reporterOptions": {

 "reportDir": "cypress/results",

 "overwrite": false,

 "html": false,

 "json": true

 }

}

To generate a report for all specs in the integration folder of the Cypress project, run the

command given below:

 npx cypress run

For running a particular test, run the following command:

npx cypress run --spec "<path of spec file>"

After the execution is completed, the mochawesome-report folder gets generated within

the Cypress project containing reports in html and json formats.

Cypress

 115

Right-click on the mochawesome.html report. Then, select the Copy Path option and open

the path copied on the browser.

The mochawesome report gets opened with details of the execution results, duration, test

case name, test steps, and so on.

On clicking on the icon (highlighted in the above image) on the left upper corner of the

screen, more options are displayed.

Cypress

 116

We can get the different views to select the passed, failed, pending, skipped test cases,

and the hooks applied to the test.

JUnit Report

Cypress provides one more type of report known as the JUnit report.

To install the package for JUnit report, run the command stated below:

 npm install cypress-junit-reporter --save-dev

The following screen will appear on your computer:

Implementation in cypress.json

Given below is an implementation of JUnit report in cypress.json:

{

 "reporter": "junit",

 "reporterOptions": {

 "mochaFile": "cypress/results/results.xml",

 "toConsole": true

 }

}

If we run multiple tests in a run, and wish to have a unique report for the individual spec

files, we have to add [hash] in the mochaFile parameter in cypress.json.

Implementation to avoid overriding report

Following is an implementation in cypress.json to avoid an overriding report in Cypress:

{

 "reporter": "junit",

 "reporterOptions": {

 "mochaFile": "cypress/results/results-[hash].xml",

 "toConsole": true

 }

}

Cypress

 117

To generate report for all specs in the integration folder of the Cypress project, run the

following command:

npx cypress run --reporter junit

The following screen will appear on your computer:

After execution is completed, the results folder gets generated within the Cypress project

containing reports in xml format.

teamcity Report

Cypress provides one more type of report known as the teamcity report.

To install the package for teamcity report, run the following command:

npm install cypress-teamcity-reporter --save-dev

The following screen will appear on your computer:

To generate report for all specs in the integration folder of the Cypress project, run the

following command:

npx cypress run --reporter teamcity

The following screen will appear on your computer:

Cypress

 118

Cypress

 119

Cypress has multiple plugins to add to its features. There are multiple types of plugins like

the authentication, component testing, custom commands, development tools and so on.

Some of the prominent plugins include:

To perform file upload task in Cypress, we have to first install a plugin with the

command mentioned below:

 npm install –dev cypress-file-upload

Once the installation is done, we have to add the statement import 'cypress-file-upload' in

the command.js file, which resides inside the support folder within the Cypress project.

To work with frames, first, we have to install the Cypress plugin for frames with the

command given below:

 npm install –D cypress-iframe

Then, we have to add the statement import 'cypress-iframe' in the code.

To identify elements with xpath locator, run the following command:

 npm install cypress-xpath

Once the installation is done, we have to add the statement require ("cypress-xpath")

within the index.js file, which resides inside the support folder within the Cypress project.

Also, we have to use the cy.xpath command to identify elements.

To enable themes, we have to install a plugin with the command mentioned below:

 npm install --save-dev cypress-dark

Once the installation is done, we have to add the statement require ("cypress-dark") within

the index.js file, which resides inside the support folder within the Cypress project.

38. Cypress — Plugins

Cypress

 120

To integrate Cypress with GitHub, we have to first install Cypress GitHub App. This can be

done either from the organization integration settings or from the project settings in the

Cypress Dashboard.

Installation

The installation of Cypress GitHub App can be done in two ways. They are explained below

in detail.

Installation via organization integration settings

Follow the steps mentioned below to install GitHub via organization integration settings:

 Navigate to the Dashboard Organization page.

 Choose an organization that you want to integrate with a GitHub account or

organization.

 Navigate to the chosen organization’s integration option from the navigation to the

side.

 Then, click the GitHub Integration button.

Installation via project settings

Follow the steps mentioned below to install GitHub via project settings:

 Choose organization inside organization switcher.

 Choose the project that you want to integrate with the repo in GitHub.

 Move to the Project settings page.

 Go to the GitHub Integration.

 Click on Install the Cypress GitHub App.

Once the GitHub App installation is done, we shall be directed to GitHub.com to proceed

with further steps, which are as follows:

 Choose the GitHub organization or account for integration with the organization

Cypress Dashboard.

 Next, we have to combine either all GitHub repositories or a particular repository

with the Cypress GitHub App.

 Click on the Install button to finish installation.

GitHub Integration Enabling

The process to enable the GitHub integration in Cypress is explained below:

39. Cypress — GitHub

Cypress

 121

 Move to the project settings page.

 Navigate to the GitHub Integration section, then click on Configure.

 Select a repository from GitHub to integrate with the project.

 As GitHub repo is connected to a Cypress project, the GitHub integration shall be

enabled.

