C# - REFLECTION

Reflection objects are used for obtaining type information at runtime. The classes that give
access to the metadata of a running program are in the System.Reflection namespace.

The System.Reflection namespace contains classes that allow you to obtain information about
the application and to dynamically add types, values, and objects to the application.

Applications of Reflection

Reflection has the following applications:
o It allows view attribute information at runtime.
¢ Itallows examining various types in an assembly and instantiate these types.
¢ It allows late binding to methods and properties

e |tallows creating new types at runtime and then performs some tasks using those types.

Viewing Metadata

We have mentioned in the preceding chapter that using reflection you can view the attribute
information.

The Memberinfo object of the System.Reflection class needs to be initialized for discovering the
attributes associated with a class. To do this, you define an object of the target class, as:

System.Reflection.MemberInfo info = typeof(MyClass);

The following program demonstrates this:

using System;

[AttributeUsage (AttributeTargets.All)]
public class HelpAttribute : System.Attribute

{
public readonly string Url;
public string Topic // Topic is a named parameter
{
get
{
return topic;
}
set
{
topic = value;
}
}
public HelpAttribute(string url) // url is a positional parameter
{
this.Url = url;
}
private string topic;
}

[HelpAttribute("Information on the class MyClass")]
class MyClass
{

b
namespace AttributeAppl


http://www.tutorialspoint.com/csharp/csharp_reflection.htm

class Program

{
static void Main(string[] args)
{
System.Reflection.MemberInfo info = typeof(MyClass);
object[] attributes = info.GetCustomAttributes(true);
for (int i = 0; i < attributes.Length; i++)
{
System.Console.WritelLine(attributes[i]);
}
Console.ReadKey();
}
}

When it is compiled and run, it displays the name of the custom attributes attached to the class
MyClass:

HelpAttribute

Example

In this example, we use the DeBuglinfo attribute created in the previous chapter and use reflection
to read metadata in the Rectangle class.

using System;
using System.Reflection;

namespace BugFixApplication

{
//a custom attribute BugFix to be
//assigned to a class and its members
[AttributeUsage (AttributeTargets.Class |
AttributeTargets.Constructor |
AttributeTargets.Field |
AttributeTargets.Method |
AttributeTargets.Property,
AllowMultiple = true)]

public class DeBugInfo : System.Attribute
{

private int bugNo;

private string developer;

private string lastReview;

public string message;

public DeBugInfo(int bg, string dev, string d)

{ this.bugNo = bg;
this.developer = dev;
this.lastReview = d;

}

public int BugNo

{
get
{

return bugNo;
}

}

public string Developer

{
get
{

return developer;



}

[DeBugInfo(45, "Zara Ali", "12/8/2012",
[DeBugInfo(49, "Nuha Ali", "10/10/2012",

}

public string LastReview

{
get

{
}

return lastReview;

}

public string Message

{
get

{
}
set

{
3

return message;

message = value;

}

class Rectangle

{

//member variables
protected double length;
protected double width;

public Rectangle(double 1, double w)

{
length = 1;
width = w;
}
[DeBugInfo(55, "ZzZara Ali",
public double GetArea()

{

}
[DeBugInfo(56, "Zara Ali",

public void Display()
{

return length * width;

Console.WritelLine("Length: {0}",
Console.WritelLine("width: {0}", width);
Console.WritelLine("Area: {0}",

}//end class Rectangle

class ExecuteRectangle

{

"19/10/2012",

"19/10/2012")]

static void Main(string[] args)

{

Rectangle r = new Rectangle(4.5, 7.5);

r.Display();

Type type = typeof(Rectangle);

Message = "Return type mismatch")]
Message = "Unused variable")]

Message = "Return type mismatch")]

length);

GetArea());

//iterating through the attribtues of the Rectangle class
foreach (Object attributes in type.GetCustomAttributes(false))

{

DeBugInfo dbi = (DeBugInfo)attributes;

if (null != dbi)
{

Console.WritelLine("Bug no: {0}",
Console.WritelLine("Developer: {0}", dbi.Developer);
Console.WritelLine("Last Reviewed: {0}", dbi.LastReview);
Console.WritelLine("Remarks: {0}", dbi.Message);

dbi.BugNo);



}

//iterating through the method attribtues
foreach (MethodInfo m in type.GetMethods())

foreach (Attribute a in m.GetCustomAttributes(true))

{
DeBugInfo dbi = (DeBugInfo)a;
if (null '= dbi)
{
Console.WritelLine("Bug no: {0}, for Method: {1}", dbi.BugNo, m.Name);
Console.WritelLine("Developer: {0}", dbi.Developer);
Console.WritelLine("Last Reviewed: {0}", dbi.LastReview);
Console.WritelLine("Remarks: {0}", dbi.Message);
}
}

}

Console.ReadLine();

When the above code is compiled and executed, it produces the following result:

Length: 4.5

width: 7.5

Area: 33.75

Bug No: 49

Developer: Nuha Ali

Last Reviewed: 10/10/2012
Remarks: Unused variable

Bug No: 45

Developer: Zara Ali

Last Reviewed: 12/8/2012
Remarks: Return type mismatch
Bug No: 55, for Method: GetArea
Developer: Zara Ali

Last Reviewed: 19/10/2012
Remarks: Return type mismatch
Bug No: 56, for Method: Display
Developer: Zara Ali

Last Reviewed: 19/10/2012
Remarks:



