C# - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C# has rich set of built-in operators and provides the following type of operators:

Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators

Misc Operators

This tutorial explains the arithmetic, relational, logical, bitwise, assignment, and other operators
one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by C#. Assume variable A holds 10
and variable B holds 20 then:

Show Examples

Operator Description Example
+ Adds two operands A+B=30
- Subtracts second operand from the first A-B=-10
* Multiplies both operands A*B =200
/ Divides numerator by de-numerator B/A=2

% Modulus Operator and remainder of after an B%A=0

++

integer division
Increment operator increases integer value byone A++ =11

Decrement operator decreases integer value by A-=9
one

Relational Operators

Following table shows all the relational operators supported by C#. Assume variable A holds 10
and variable B holds 20, then:

Show Examples

Operator Description Example

Checks if the values of two operands are equal or A == Bis not true.
not, if yes then condition becomes true.

Checks if the values of two operands are equal or Al = Bis true.
not, if values are not equal then condition becomes
true.

http://www.tutorialspoint.com/csharp/csharp_operators.htm
/csharp/csharp_arithmetic_operators.htm
/csharp/csharp_relational_operators.htm

> Checks if the value of left operand is greater than A > Bis nottrue.
the value of right operand, if yes then condition
becomes true.

< Checks if the value of left operand is less than the A <Bistrue.
value of right operand, if yes then condition
becomes true.

>= Checks if the value of left operand is greater than A >= B is not true.
or equal to the value of right operand, if yes then
condition becomes true.

<= Checks if the value of left operand is less than or A <=B s true.
equal to the value of right operand, if yes then
condition becomes true.

Logical Operators

Following table shows all the logical operators supported by C#. Assume variable A holds Boolean
value true and variable B holds Boolean value false, then:

Show Examples

Operator Description Example
&& Called Logical AND operator. If both the operands is false.

are non zero then condition becomes true.

[Called Logical OR Operator. If any of the two A||Bis true.
operands is non zero then condition becomes true.

! Called Logical NOT Operator. Use to reverses the I[A &&B]is true.
logical state of its operand. If a condition is true
then Logical NOT operator will make false.

Bitwise Operators

Bitwise operator works on bits and perform bit by bit operation. The truth tables for &, |, and ~ are
as follows:

p q P&q pla p~q
0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; then in the binary format they are as follows:
A =00111100

B =00001101

A&B = 0000 1100

A|B = 00111101

/csharp/csharp_logical_operators.htm

A”B = 0011 0001
~A =11000011

The Bitwise operators supported by C# are listed in the following table. Assume variable A holds
60 and variable B holds 13, then:

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result if it = 12, which is 0000
exists in both operands. 1100

| Binary OR Operator copies a bit if it exists in either A|B = 61, whichis 0011 1101
operand.

~ Binary XOR Operator copies the bitif itissetinone AB = 49, which is 0011 0001
operand but not both.

~ Binary Ones Complement Operator is unary and A =61, whichis 1100 0011
has the effect of 'flipping' bits. in 2's complementdue to a

signed binary number.

<< Binary Left Shift Operator. The left operands value A << 2 = 240, whichis 1111
is moved left by the number of bits specified by the 0000
right operand.

>> Binary Right Shift Operator. The left operands value A >> 2 =15, which is 0000
is moved right by the number of bits specified by 1111

the right operand.

Assignment Operators
There are following assignment operators supported by C#:

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from C = A + B assigns value of A
right side operands to left side operand + Binto C

+= Add AND assignment operator, It adds right C +=AisequivalenttoC=C

operand to the left operand and assign the resultto + A
left operand

-= Subtract AND assignment operator, It subtracts C-=AisequivalenttoC=C-
right operand from the left operand and assign the A

result to left operand

= Multiply AND assignment operator, It multiplies C= AisequivalenttoC=C
right operand with the left operand and assign the *A
result to left operand

/= Divide AND assignment operator, It divides left C/= AisequivalenttoC=C/
operand with the right operand and assign the A
result to left operand

%= Modulus AND assignment operator, It takes C %= A isequivalentto C=C
modulus using two operands and assign the result % A
to left operand

/csharp/csharp_bitwise_operators.htm
/csharp/csharp_assignment_operators.htm

<<= Left shift AND assignment operator
>>= Right shift AND assignment operator

&= Bitwise AND assignment operator
= bitwise exclusive OR and assignment operator

|= bitwise inclusive OR and assignment operator

Miscillaneous Operators

C<<=2issameasC=C
<< 2

C>>=2issameasC=C
>> 2

C&=2issameasC=C&?2
~"=2issameasC=C" 2

Cl|=2issameasC=C|2

There are few other important operators including sizeof, typeof and ? : supported by C#.

Show Examples

Operator Description

sizeof Returns the size of a data type.

typeof Returns the type of a class.

& Returns the address of an variable.

* Pointer to a variable.

7. Conditional Expression

is Determines whether an object is of a certain type.
as Cast without raising an exception if the cast fails.

Operator Precedence in C#

Example
sizeofint, returns 4.
typeofStreamReader;

&a; returns actual address of
the variable.

*a, creates pointer named 'a’
to a variable.

If Condition is true ? Then
value X : Otherwise value Y

IfFordisCar // checks if Ford is
an object of the Car class.

Object obj = new
StringReader " Hello " ;

StringReader r = obj as
StringReader;

Operator precedence determines the grouping of terms in an expression. This affects evaluation
of an expression. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator.

For example x =7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so the first evaluation takes place for 3*2 and then 7 is added into it.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators are evaluated first.

Show Examples

Category Operator Associativity

Postfix [1->.++-- Left to right

Unary + - ! ~ ++ - - type* & sizeof Right to left

/csharp/csharp_misc_operators.htm
/csharp/csharp_operators_precedence.htm

Multiplicative
Additive
Shift
Relational
Equality
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment

Comma

<< >>

< <=>>=

g

>

&&

Processing math: 100%

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

