
http://www.tutorialspoint.com/csharp/csharp_operators.htm Copyright © tutorialspoint.com

C# - OPERATORSC# - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C# has rich set of built-in operators and provides the following type of operators:

Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators
Misc Operators

This tutorial explains the arithmetic, relational, logical, bitwise, assignment, and other operators
one by one.

Arithmetic Operators
Following table shows all the arithmetic operators supported by C#. Assume variable A holds 10
and variable B holds 20 then:

Show Examples

Operator Description Example

+ Adds two operands A + B = 30

- Subtracts second operand from the first A - B = -10

* Multiplies both operands A * B = 200

/ Divides numerator by de-numerator B / A = 2

% Modulus Operator and remainder of after an
integer division

B % A = 0

++ Increment operator increases integer value by one A++ = 11

-- Decrement operator decreases integer value by
one

A-- = 9

Relational Operators
Following table shows all the relational operators supported by C#. Assume variable A holds 10
and variable B holds 20, then:

Show Examples

Operator Description Example

== Checks if the values of two operands are equal or
not, if yes then condition becomes true.

A == B is not true.

!= Checks if the values of two operands are equal or
not, if values are not equal then condition becomes
true.

A ! = B is true.

http://www.tutorialspoint.com/csharp/csharp_operators.htm
/csharp/csharp_arithmetic_operators.htm
/csharp/csharp_relational_operators.htm

> Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

A > B is not true.

< Checks if the value of left operand is less than the
value of right operand, if yes then condition
becomes true.

A < B is true.

>= Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

A >= B is not true.

<= Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

A <= B is true.

Logical Operators
Following table shows all the logical operators supported by C#. Assume variable A holds Boolean
value true and variable B holds Boolean value false, then:

Show Examples

Operator Description Example

&& Called Logical AND operator. If both the operands
are non zero then condition becomes true.

A && B is false.

|| Called Logical OR Operator. If any of the two
operands is non zero then condition becomes true.

A | | B is true.

! Called Logical NOT Operator. Use to reverses the
logical state of its operand. If a condition is true
then Logical NOT operator will make false.

! A && B is true.

Bitwise Operators
Bitwise operator works on bits and perform bit by bit operation. The truth tables for &, |, and ^ are
as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; then in the binary format they are as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

/csharp/csharp_logical_operators.htm

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C# are listed in the following table. Assume variable A holds
60 and variable B holds 13, then:

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the result if it
exists in both operands.

A & B = 12, which is 0000
1100

| Binary OR Operator copies a bit if it exists in either
operand.

A | B = 61, which is 0011 1101

^ Binary XOR Operator copies the bit if it is set in one
operand but not both.

AB = 49, which is 0011 0001

~ Binary Ones Complement Operator is unary and
has the effect of 'flipping' bits.

 A = 61, which is 1100 0011
in 2's complement due to a
signed binary number.

<< Binary Left Shift Operator. The left operands value
is moved left by the number of bits specified by the
right operand.

A << 2 = 240, which is 1111
0000

>> Binary Right Shift Operator. The left operands value
is moved right by the number of bits specified by
the right operand.

A >> 2 = 15, which is 0000
1111

Assignment Operators
There are following assignment operators supported by C#:

Show Examples

Operator Description Example

= Simple assignment operator, Assigns values from
right side operands to left side operand

C = A + B assigns value of A
+ B into C

+= Add AND assignment operator, It adds right
operand to the left operand and assign the result to
left operand

C += A is equivalent to C = C
+ A

-= Subtract AND assignment operator, It subtracts
right operand from the left operand and assign the
result to left operand

C -= A is equivalent to C = C -
A

*= Multiply AND assignment operator, It multiplies
right operand with the left operand and assign the
result to left operand

C *= A is equivalent to C = C
* A

/= Divide AND assignment operator, It divides left
operand with the right operand and assign the
result to left operand

C /= A is equivalent to C = C /
A

%= Modulus AND assignment operator, It takes
modulus using two operands and assign the result
to left operand

C %= A is equivalent to C = C
% A

/csharp/csharp_bitwise_operators.htm
/csharp/csharp_assignment_operators.htm

<<= Left shift AND assignment operator C <<= 2 is same as C = C
<< 2

>>= Right shift AND assignment operator C >>= 2 is same as C = C
>> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and assignment operator C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and assignment operator C |= 2 is same as C = C | 2

Miscillaneous Operators
There are few other important operators including sizeof, typeof and ? : supported by C#.

Show Examples

Operator Description Example

sizeof Returns the size of a data type. sizeofint, returns 4.

typeof Returns the type of a class. typeofStreamReader;

& Returns the address of an variable. &a; returns actual address of
the variable.

* Pointer to a variable. *a; creates pointer named 'a'
to a variable.

? : Conditional Expression If Condition is true ? Then
value X : Otherwise value Y

is Determines whether an object is of a certain type. IfFordisCar // checks if Ford is
an object of the Car class.

as Cast without raising an exception if the cast fails. Object obj = new
StringReader " Hello " ;

StringReader r = obj as
StringReader;

Operator Precedence in C#
Operator precedence determines the grouping of terms in an expression. This affects evaluation
of an expression. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator.

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so the first evaluation takes place for 3*2 and then 7 is added into it.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators are evaluated first.

Show Examples

Category Operator Associativity

Postfix [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - type* & sizeof Right to left

/csharp/csharp_misc_operators.htm
/csharp/csharp_operators_precedence.htm

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

Processing math: 100%

