C# - OPERATOR OVERLOADING

You can redefine or overload most of the built-in operators available in C#. Thus a programmer
can use operators with user-defined types as well. Overloaded operators are functions with special
names the keyword operator followed by the symbol for the operator being defined. similar to
any other function, an overloaded operator has a return type and a parameter list.

For example, go through the following function:

public static Box operator+ (Box b, Box c)

{
Box box = new Box();
box.length = b.length + c.length;
box.breadth = b.breadth + c.breadth;
box.height = b.height + c.height;
return box;

}

The above function implements the addition operator + for a user-defined class Box. It adds the
attributes of two Box objects and returns the resultant Box object.

Implementing the Operator Overloading

The following program shows the complete implementation:

using System;
namespace OperatorOvlApplication
{
class Box
{
private double length; // Length of a box
private double breadth; // Breadth of a box
private double height; // Height of a box

public double getVolume()

{

return length * breadth * height;
}
public void setlLength(double len)
{

length = 1len;
}
public void setBreadth(double bre)
{

breadth = bre;
}
public void setHeight(double hei)
{

height = hei;
}

// Overload + operator to add two Box objects.
public static Box operator+ (Box b, Box c)
{
Box box = new Box();
box.length = b.length + c.length;
box.breadth = b.breadth + c.breadth;
box.height = b.height + c.height;
return box;

http://www.tutorialspoint.com/csharp/csharp_operator_overloading.htm

}

class Tester
{
static void Main(string[] args)
{
Box Boxl = new Box();
Box Box2 = new Box();
Box Box3 = new Box();
double volume = 0.0;

// Declare Box1l of type Box
// Declare Box2 of type Box
// Declare Box3 of type Box
// Store the volume of a box here

// box 1 specification
Box1.setLength(6.0);
Box1l.setBreadth(7.0);
Box1l.setHeight(5.0);

// box 2 specification
Box2.setlLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);

// volume of box 1
volume = Boxl.getVolume();
Console.WritelLine("Volume of Box1

{0}", volume);
// volume of box 2
volume = Box2.getVolume();

Console.WriteLine("Volume of Box2 : volume);

{o}",
// Add two object as follows:
Box3 = Box1l + Box2;

// volume of box 3

volume = Box3.getVolume();
Console.WritelLine("Volume of Box3
Console.ReadKey();

{0}", volume);

When the above code is compiled and executed, it produces the following result:

Volume of Box1l : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

Overloadable and Non-Overloadable Operators

The following table describes the overload ability of the operators in C#:

Operators Description

+,-, 0~ ++, - These unary operators take one operand and can be overloaded.
+,-.%1,% These binary operators take one operand and can be overloaded.
==,!=,<,>,<=,>= The comparison operators can be overloaded

&&, || The conditional logical operators cannot be overloaded directly.
+=,-=,*=, /=, %= The assignment operators cannot be overloaded.

=,. 7, ->, new, is, These operators cannot be overloaded.

sizeof, typeof

Example

In the light of the above discussions, let us extend the preceding example, and overload few more
operators:

using System;
namespace OperatorOvlApplication
{
class Box
{
private double length; // Length of a box
private double breadth; // Breadth of a box
private double height; // Height of a box

public double getVolume()

{

return length * breadth * height;
}
public void setlLength(double len)
{

length = len;
}
public void setBreadth(double bre)
{

breadth = bre;
}
public void setHeight(double hei)
{

height = hei;
}

// Overload + operator to add two Box objects.
public static Box operator+ (Box b, Box c)

{
Box box = new Box();
box.length = b.length + c.length;
box.breadth = b.breadth + c.breadth;
box.height = b.height + c.height;
return box;
}
public static bool operator == (Box lhs, Box rhs)
{

bool status = false;
if (lhs.length == rhs.length && lhs.height == rhs.height && lhs.breadth ==
rhs.breadth)

{
status = true;
}
return status;
}
public static bool operator !=(Box 1lhs, Box rhs)
{

bool status = false;
if (lhs.length !'= rhs.length || lhs.height != rhs.height || lhs.breadth !=
rhs.breadth)

{
}

return status;

status = true;

}

public static bool operator <(Box lhs, Box rhs)

bool status = false;
if (lhs.length < rhs.length && lhs.height < rhs.height && lhs.breadth <
rhs.breadth)

{
status = true;
}
return status;
}
public static bool operator >(Box lhs, Box rhs)
{

bool status = false;
if (lhs.length > rhs.length && lhs.height > rhs.height && lhs.breadth >
rhs.breadth)

{
status = true;
}
return status;
}
public static bool operator <=(Box lhs, Box rhs)
{

bool status = false;
if (lhs.length <= rhs.length && lhs.height <= rhs.height && lhs.breadth <=
rhs.breadth)

{
status = true;
}
return status;
}
public static bool operator >=(Box lhs, Box rhs)
{

bool status = false;
if (lhs.length >= rhs.length && lhs.height >= rhs.height && lhs.breadth >=
rhs.breadth)

{
status = true;
}
return status;
}
public override string ToString()
{
return String.Format(" ({0}, {1}, {2})", length, breadth, height);
}
}
class Tester
{
static void Main(string[] args)
{
Box Boxl = new Box(); // Declare Boxl of type Box
Box Box2 = new Box(); // Declare Box2 of type Box
Box Box3 = new Box(); // Declare Box3 of type Box

Box Box4 = new Box();
double volume = 0.0; // Store the volume of a box here

// box 1 specification
Box1l.setLength(6.0);
Box1l.setBreadth(7.0);
Box1l.setHeight(5.0);

// box 2 specification
Box2.setlLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);

//displaying the Boxes using the overloaded ToString():

Console.WritelLine("Box 1: {0}", Box1.ToString());
Console.WritelLine("Box 2: {0}", Box2.ToString());

// volume of box 1
volume = Boxl.getVolume();
Console.WritelLine("Volume of Box1 : {0}", volume);

// volume of box 2
volume = Box2.getVolume();
Console.WritelLine("Volume of Box2 : {0}", volume);

// Add two object as follows:
Box3 = Boxl + Box2;
Console.WritelLine("Box 3: {0}", Box3.ToString());

// volume of box 3
volume = Box3.getVolume();
Console.WritelLine("Volume of Box3 : {0}", volume);

//comparing the boxes
if (Box1l > Box2)

Console.WriteLine("Box1 is greater than Box2");
else

Console.WriteLine("Box1 is greater than Box2");

if (Box1l < Box2)

Console.WritelLine("Box1 is less than Box2");
else

Console.WritelLine("Box1 is not less than Box2");

if (Box1 >= Box2)

Console.WriteLine("Box1 is greater or equal to Box2");
else

Console.WritelLine("Box1l is not greater or equal to Box2");

if (Box1l <= Box2)

Console.WritelLine("Box1 is less or equal to Box2");
else

Console.WriteLine("Box1 is not less or equal to Box2");

if (Box1 != Box2)

Console.WritelLine("Box1 is not equal to Box2");
else

Console.WritelLine("Box1 is not greater or equal to Box2");
Box4 = Box3;

if (Box3 == Box4)
Console.WritelLine("Box3 is equal to Box4");
else

Console.WritelLine("Box3 is not equal to Box4");

Console.ReadKey();

When the above code is compiled and executed, it produces the following result:

Box 1: (6, 7, 5)

Box 2: (12, 13, 10)

Volume of Box1 : 210

Volume of Box2 : 1560

Box 3: (18, 20, 15)

Volume of Box3 : 5400

Box1l is not greater than Box2
Box1 is less than Box2

Box1l is not greater or equal to Box2
Box1l is less or equal to Box2
Box1l is not equal to Box2

RAv?2 ic anual tn RnavA

| Loading [Mathjax]/jax/output/HTML-CSS/jax.js

