C# - CONSTANTS AND LITERALS

The constants refer to fixed values that the program may not alter during its execution. These
fixed values are also called literals. Constants can be of any of the basic data types like an integer
constant, a floating constant, a character constant, or a string literal. There are also enumeration
constants as well.

The constants are treated just like regular variables except that their values cannot be modified
after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or
radix: Ox or OX for hexadecimal, O for octal, and no prefix id for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and long,
respectively. The suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

OxFeelL /* Legal */

078 /* Illegal: 8 is not an octal digit */
032uU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of Integer literals:

85 /* decimal */

0213 /* octal */

Ox4b /* hexadecimal */
30 /* int */

30u /* unsigned int */
301 /* long */

30ul /* unsigned long */

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent part.
You can represent floating point literals either in decimal form or exponential form.

Here are some examples of floating-point literals:

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

While representing in decimal form, you must include the decimal point, the exponent, or both;
and while representing using exponential form you must include the integer part, the fractional
part, or both. The signed exponentis introduced by e or E.

Character Constants

Character literals are enclosed in single quotes. For example, 'x' and can be stored in a simple
variable of char type. A character literal can be a plain character suchas x’, an escape sequence
suchas'\t', or a universal character suchas\u02Co'.

There are certain characters in C# when they are preceded by a backslash. The have special
meaning and they are used to represent like newline \n or tab \t. Here, is a list of some of such


http://www.tutorialspoint.com/csharp/csharp_constants.htm

escape sequence codes:

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits
\xhh . .. Hexadecimal number of one or more digits

Following is the example to show few escape sequence characters:

using System;
namespace EscapeChar

{
class Program
{
static void Main(string[] args)
{
Console.WritelLine("Hello\tWorld\n\n");
Console.ReadlLine();
}
}
}

When the above code is compiled and executed, it produces the following result:

Hello world

String Literals

String literals or constants are enclosed in double quotes "" or with @"". A string contains
characters that are similar to character literals: plain characters, escape sequences, and universal
characters.

You can break a long line into multiple lines using string literals and separating the parts using
whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"
"hello, \
dear"

Ilhell(), n Ildll Ilearll



@"hello dear"

Defining Constants

Constants are defined using the const keyword. Syntax for defining a constant is:

const <data_type> <constant_name> = value;

The following program demonstrates defining and using a constant in your program:

using System;
namespace DeclaringConstants

{

class Program
{

static void Main(string[] args)

{
const double pi = 3.14159;

// constant declaration

double r;

Console.WritelLine("Enter Radius: ");

r = Convert.ToDouble(Console.ReadlLine());

double areaCircle = pi * r * r;

Console.WritelLine("Radius: {0}, Area: {1}", r, areaCircle);
Console.ReadlLine();

When the above code is compiled and executed, it produces the following result:

Enter Radius:
3

Radinc: 2 Aroa:* 29 27A°2A1
Loading [Mathjax]/jax/output/HTML-CSS/jax.js



