C# - BITARRAY CLASS

The BitArray class manages a compact array of bit values, which are represented as Booleans,
where true indicates that the bitis on 1 and false indicates the bit is off 0.

It is used when you need to store the bits but do not know the number of bits in advance. You can
access items from the BitArray collection by using an integer index, which starts from zero.

Methods and Properties of the BitArray Class

The following table lists some of the commonly used properties of the BitArray class:

Property Description

Count Gets the number of elements contained in the BitArray.

IsReadOnly Gets a value indicating whether the BitArray is read-only.

ltem Gets or sets the value of the bit at a specific position in the BitArray.

Length

Gets or sets the number of elements in the BitArray.

The following table lists some of the commonly used methods of the BitArray class:

Sr.No.
1

Methods

public BitArray AndBitArrayvalue;

Performs the bitwise AND operation on the elements in the current BitArray against the
corresponding elements in the specified BitArray.

public bool Getintindex;

Gets the value of the bit at a specific position in the BitArray.

public BitArray Not;

Inverts all the bit values in the current BitArray, so that elements set to true are
changed to false, and elements set to false are changed to true.

public BitArray OrBitArrayvalue;

Performs the bitwise OR operation on the elements in the current BitArray against the
corresponding elements in the specified BitArray.

public void Setintindex, boolvalue;

Sets the bit at a specific position in the BitArray to the specified value.

public void SetAllboolvalue;

Sets all bits in the BitArray to the specified value.

public BitArray XorBitArrayvalue;


http://www.tutorialspoint.com/csharp/csharp_bitarray.htm

Performs the bitwise eXclusive OR operation on the elements in the current BitArray
against the corresponding elements in the specified BitArray.

Example

The following example demonstrates the use of BitArray class:

using System;
using System.Collections;

namespace CollectionsApplication

{

class Program

{

static void Main(string[] args)

{
//creating two bit arrays of size 8
BitArray bal = new BitArray(8);
BitArray ba2 = new BitArray(8);
byte[] a = { 60 };
byte[] b { 13 };

//storing the values 60, and 13 into the bit arrays
bal new BitArray(a);
ba2 new BitArray(b);

//content of bal
Console.WritelLine("Bit array bal: 60");

for (int i = 0; i < bal.Count; i++)

{
¥

Console.WriteLine();

Console.Write("{®, -6} ", bal[i]);

//content of ba2
Console.WritelLine("Bit array ba2: 13");

for (int 1 = 0; i < ba2.Count; i++)

{
}

Console.WritelLine();
BitArray ba3 = new BitArray(8);
ba3 = bal.And(ba2);

Console.wWrite("{0, -6} ", baz2[i]);

//content of ba3
Console.WritelLine("Bit array ba3 after AND operation: 12");

for (int 1 = 0; i < ba3.Count; i++)

{
¥

Console.WritelLine();
ba3 = bal.Or(ba2);

Console.Write("{0, -6} ", ba3[i]);

//content of ba3
Console.WritelLine("Bit array ba3 after OR operation: 61");

for (int i = 0; i < ba3.Count; i++)

{
}

Console.WritelLine();

Console.Write("{O®, -6} ", ba3[i]);

Console.ReadKey();



When the above code is compiled and executed, it produces the following result:

Bit array bal: 60

False False True True True True False False
Bit array ba2: 13

True False True True False False False False
Bit array ba3 after AND operation: 12

False False True True False False False False
Bit array ba3 after OR operation: 61

Trila Ealca Triia Triia Ealca Ealca Ealeca Ealcoe

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js



