C# - BASIC SYNTAX

C# is an object-oriented programming language. In Object-Oriented Programming methodology, a
program consists of various objects that interact with each other by means of actions. The actions
that an object may take are called methods. Objects of the same kind are said to have the same
type or, are said to be in the same class.

For example, let us consider a Rectangle object. It has attributes such as length and width.
Depending upon the design, it may need ways for accepting the values of these attributes,
calculating the area, and displaying details.

Let us look at implementation of a Rectangle class and discuss C# basic syntax:

using System;
namespace RectangleApplication
{
class Rectangle
{
// member variables
double length;
double width;
public void Acceptdetails()
{
length = 4.5;
width = 3.5;
}

public double GetArea()
{

}

return length * width;

public void Display()

{
Console.WritelLine("Length: {03}", length);
Console.WriteLine("width: {@3}", width);
Console.WritelLine("Area: {0}", GetArea());

}

class ExecuteRectangle

{
static void Main(string[] args)
{
Rectangle r = new Rectangle();
r.Acceptdetails();
r.Display();
Console.ReadlLine();

}

When the above code is compiled and executed, it produces the following result:

Length: 4.5
width: 3.5
Area: 15.75

The using Keyword
The first statementin any C# program is

using System;


http://www.tutorialspoint.com/csharp/csharp_basic_syntax.htm

The using keyword is used for including the namespaces in the program. A program can include
multiple using statements.

The class Keyword
The class keyword is used for declaring a class.
Comments in C#

Comments are used for explaining code. Compilers ignore the comment entries. The multiline
comments in C# programs start with /* and terminates with the characters */ as shown below:

/* This program demonstrates
The basic syntax of C# programming
Language */

Single-line comments are indicated by the '//' symbol. For example,

}//end class Rectangle

Member Variables

Variables are attributes or data members of a class, used for storing data. In the preceding
program, the Rectangle class has two member variables named length and width.

Member Functions
Functions are set of statements that perform a specific task. The member functions of a class are

declared within the class. Our sample class Rectangle contains three member functions:
AcceptDetails, GetArea and Display.

Instantiating a Class

In the preceding program, the class ExecuteRectangle contains the Main method and instantiates
the Rectangle class.

Identifiers

An identifier is a name used to identify a class, variable, function, or any other user-defined item.
The basic rules for naming classes in C# are as follows:

e A name must begin with a letter that could be followed by a sequence of letters, digits 0-9 or
underscore. The first character in an identifier cannot be a digit.

e It must not contain any embedded space or symbolsuchas?-+'@# %~ &* [1{}.;:""/
and \. However, an underscore D can be used.

e |t should not be a C# keyword.
C# Keywords
Keywords are reserved words predefined to the C# compiler. These keywords cannot be used as
identifiers. However, if you want to use these keywords as identifiers, you may prefix the keyword

with the @ character.

In C#, some identifiers have special meaning in context of code, such as get and set are called
contextual keywords.

The following table lists the reserved keywords and contextual keywords in C#:

Reserved Keywords



abstract
catch
default
explicit

foreach

interface

null

private
sealed
switch
ulong

volatile

Contextual Keywords

add
global

partial
method

as
char
delegate
extern

goto

internal

object

protected
short

this
unchecked

while

alias

group

remove

base
checked
do

false

is
operator
public
sizeof

throw

unsafe

ascending

into

select

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

bool
class
double
finally
implicit
lock

out

readonly
stackalloc
true

ushort

descending

join

set

break
const
else

fixed

long

out
genericmodifier

ref
static
try

using

dynamic

let

byte
continue
enum
float

in
genericmodifier

namespace

override

return
string
typeof

virtual

from

orderby

case
decimal
event
for

int

new

params

sbyte
struct
uint

void

get

partial
type



