
http://www.tutorialspoint.com/cplusplus/increment_decrement_operators_overloading.htm
Copyright © tutorialspoint.com

OVERLOADING INCREMENT ++ AND DECREMENT --OVERLOADING INCREMENT ++ AND DECREMENT --

The increment + + and decrement − − operators are two important unary operators available in
C++.

Following example explain how increment + + operator can be overloaded for prefix as well as
postfix usage. Similar way, you can overload operator − − .

#include <iostream>
using namespace std;

class Time
{
 private:
 int hours; // 0 to 23
 int minutes; // 0 to 59
 public:
 // required constructors
 Time(){
 hours = 0;
 minutes = 0;
 }
 Time(int h, int m){
 hours = h;
 minutes = m;
 }
 // method to display time
 void displayTime()
 {
 cout << "H: " << hours << " M:" << minutes <<endl;
 }
 // overloaded prefix ++ operator
 Time operator++ ()
 {
 ++minutes; // increment this object
 if(minutes >= 60)
 {
 ++hours;
 minutes -= 60;
 }
 return Time(hours, minutes);
 }
 // overloaded postfix ++ operator
 Time operator++(int)
 {
 // save the orignal value
 Time T(hours, minutes);
 // increment this object
 ++minutes;
 if(minutes >= 60)
 {
 ++hours;
 minutes -= 60;
 }
 // return old original value
 return T;
 }
};
int main()
{
 Time T1(11, 59), T2(10,40);

 ++T1; // increment T1
 T1.displayTime(); // display T1

http://www.tutorialspoint.com/cplusplus/increment_decrement_operators_overloading.htm

 ++T1; // increment T1 again
 T1.displayTime(); // display T1

 T2++; // increment T2
 T2.displayTime(); // display T2
 T2++; // increment T2 again
 T2.displayTime(); // display T2
 return 0;
}

When the above code is compiled and executed, it produces the following result:

H: 12 M:0
H: 12 M:1
H: 10 M:41
H: 10 M:42

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

