FUNCTION CALL OPERATOR OVERLOADING IN C++

The function call operator can be overloaded for objects of class type. When you overload , you
are not creating a new way to call a function. Rather, you are creating an operator function that
can be passed an arbitrary number of parameters.

Following example explains how a function call operator can be overloaded.

#include <iostream>
using namespace std;

class Distance
{ .
private:
int feet; // 0 to infinite
int inches; // 0 to 12
public:
// required constructors
Distance(){
feet = 0;
inches = 0;
}
Distance(int f, int i){
feet = f;
inches = 1i;
}
// overload function call
Distance operator()(int a, int b, int c)
{
Distance D;
// just put random calculation
D.feet = a + ¢ + 10;
D.inches = b + ¢ + 100 ;
return D;
}
// method to display distance
void displayDistance()

{
b

cout << "F: " << feet << " I:" << 1inches << endl;

I¥
int main()

{
Distance D1(11, 10), D2;

cout << "First Distance : ";
D1.displayDistance();

D2 = D1(10, 10, 10); // invoke operator()
cout << "Second Distance :";
D2.displayDistance();

return 0;

When the above code is compiled and executed, it produces the following result:

First Distance : F: 11 I:10
Second Distance :F: 30 T:120
Loading [Math)Jax]/jax/output/HTML-CSS/jax.js


http://www.tutorialspoint.com/cplusplus/function_call_operator_overloading.htm

