C++ WEB PROGRAMMING

What is CGI?

e The Common Gateway Interface, or CGl, is a set of standards that define how information is
exchanged between the web server and a custom script.

e The CGI specs are currently maintained by the NCSA and NCSA defines CGl is as follows:

e The Common Gateway Interface, or CGl, is a standard for external gateway programs to
interface with information servers such as HTTP servers.

e The current version is CGI/1.1 and CGI/1.2 is under progress.

Web Browsing

To understand the concept of CGlI, let's see what happens when we click a hyperlink to browse a
particular web page or URL.

e Your browser contacts the HTTP web server and demand for the URL ie. filename.

e Web Server will parse the URL and will look for the filename. If it finds requested file then
web server sends that file back to the browser otherwise sends an error message indicating
that you have requested a wrong file.

e Web browser takes response from web server and displays either the received file or error
message based on the received response.

However, it is possible to set up the HTTP server in such a way that whenever a file in a certain
directory is requested, that file is not sent back; instead it is executed as a program, and produced
output from the program is sent back to your browser to display.

The Common Gateway Interface CGI is a standard protocol for enabling applications
calledCGIprogramsorCGlIscripts to interact with Web servers and with clients. These CGI programs can
be a written in Python, PERL, Shell, C or C++ etc.

CGI Architecture Diagram

The following simple program shows a simple architecture of CGl:

Web Server

Web Client Server Side Script

L — —

Database

http://www.tutorialspoint.com/cplusplus/cpp_web_programming.htm

« J

HTTP Protocol

Web Server Configuration

Before you proceed with CGl Programming, make sure that your Web Server supports CGl and it is
configured to handle CGI Programs. All the CGI Programs to be executed by the HTTP server are
keptin a pre-configured directory. This directory is called CGI directory and by convention itis
named as /var/www/cgi-bin. By convention CGI files will have extension as .cgi, though they are
C++ executable.

By default, Apache Web Server is configured to run CGI programs in /var/www/cgi-bin. If you want
to specify any other directory to run your CGlI scripts, you can modify the following section in the
httpd.conf file:

<Directory "/var/www/cgi-bin">
AllowOverride None
Options ExecCGI
Order allow, deny
Allow from all
</Directory>

<Directory "/var/www/cgi-bin">

Options All
</Directory>

Here, | assumed that you have Web Server up and running successfully and you are able to run
any other CGIl program like Perl or Shell etc.

First CGl Program
Consider the following C++ Program content:

#include <iostream>
using namespace std;

int main ()

{
cout << "Content-type:text/htmI\r\n\r\n";
cout << '"<html>\n";
cout << "<head>\n";
cout << '"<title>Hello World - First CGI Program</title>\n";
cout << "</head>\n";
cout << "<body>\n";
cout << "<h2>Hello World! This is my first CGI program</h2>\n";
cout << "</body>\n";
cout << "</html>\n";
return 0;
}

Compile above code and name the executable as cplusplus.cgi. This file is being keptin
/var/www/cgi-bin directory and it has following content. Before running your CGI program make
sure you have change mode of file using chmod 755 cplusplus.cgi UNIX command to make file
executable. Now if you click cplusplus.cqgi then this produces the following output:

Hello World! This is my first CGl program

Above C++ program is a simple program which is writing its output on STDOUT file ie. screen.
There is one important and extra feature available which is first line to be printed Content-

/cgi-bin/cplusplus.cgi

type:text/htmI\r\n\r\n. This line is sent back to the browser and specify the content type to be
displayed on the browser screen. Now you must have understood basic concept of CGl and you can
write many complicated CGI programs using Python. A C++ CGI program can interact with any
other exernal system, such as RDBMS, to exchange information.

HTTP Header

The line Content-type:text/html\r\n\r\n is part of HTTP header, which is sent to the browser to
understand the content. All the HTTP header will be in the following form

HTTP Field Name: Field Content

For Example
Content-type: text/html\r\n\r\n

There are few other important HTTP headers, which you will use frequently in your CGI
Programming.

Header Description

Content-type: A MIME string defining the format of the file being returned.
Example is Content-type:text/html

Expires: Date The date the information becomes invalid. This should be used by
the browser to decide when a page needs to be refreshed. A valid
date string should be in the format 01 Jan 1998 12:00:00 GMT.

Location: URL The URL that should be returned instead of the URL requested. You
can use this filed to redirect a request to any file.

Last-modified: Date The date of last modification of the resource.

Content-length: N The length, in bytes, of the data being returned. The browser uses

this value to report the estimated download time for a file.

Set-Cookie: String Set the cookie passed through the string

CGI Environment Variables

All the CGI program will have access to the following environment variables. These variables play
an important role while writing any CGI program.

Variable Name Description

CONTENT _TYPE The data type of the content. Used when the client is sending
attached content to the server. For example file upload etc.

CONTENT_LENGTH The length of the query information. It's available only for POST
requests

HTTP_COOKIE Return the set cookies in the form of key & value pair.

HTTP_USER_AGENT The User-Agent request-header field contains information about
the user agent originating the request. Its name of the web
browser.

PATH_INFO The path for the CGI script.

QUERY_STRING The URL-encoded information that is sent with GET method
request.

REMOTE_ADDR The IP address of the remote host making the request. This can be

useful for logging or for authentication purpose.

REMOTE_HOST The fully qualified name of the host making the request. If this

information is not available then REMOTE_ADDR can be used to
get IR address.

REQUEST_METHOD The method used to make the request. The most common
methods are GET and POST.

SCRIPT_FILENAME The full path to the CGI script.

SCRIPT_NAME The name of the CGI script.

SERVER_NAME The server's hostname or IP Address

SERVER_SOFTWARE The name and version of the software the server is running.

Here is small CGIl program to list out all the CGl variables. Click this link to see the result Get

Environment

#include <iostream>
#include <stdlib.h>
using namespace std;

const string ENV[24] = {

"COMSPEC", "DOCUMENT_ROOT", "GATEWAY_INTERFACE",
"HTTP_ACCEPT", "HTTP_ACCEPT_ENCODING",
"HTTP_ACCEPT_LANGUAGE", "HTTP_CONNECTION",
"HTTP_HOST", "HTTP_USER_AGENT", "PATH",
"QUERY_STRING", "REMOTE_ADDR", "REMOTE_PORT",
"REQUEST_METHOD", "REQUEST_URI", "SCRIPT_FILENAME",
"SCRIPT_NAME", "SERVER_ADDR", "SERVER_ADMIN",
"SERVER_NAME", "SERVER_PORT", "SERVER_PROTOCOL",
"SERVER_SIGNATURE", "SERVER_SOFTWARE" };

int main ()

{

cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<

"Content-type:text/html\r\n\r\n";

"<html>\n";

"<head>\n";

"<title>CGI Envrionment Variables</title>\n";
"</head>\n";

"<body>\n";

"<table border = \"O\" cellspacing = \"2\">",

for (int 1 = 0; 1 < 24; i++)

{

}

cout << "<tr><td>" << ENV[i] << "</td><td>";
// attempt to retrieve value of environment variable
char *value = getenv(ENV[i].c_str());
if (value '= 0){
cout << value;
telse{
cout << "Environment variable does not exist.";

}

cout << "</td></tr>\n";

cout << '"</table><\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;

http://www.tutorialspoint.com/cgi-bin/cpp_env.cgi

C++ CGI Library

For real examples, you would need to do many operations by your CGI program. There is a CGI
library written for C++ program which you can download from ftp://ftp.gnu.org/gnu/cgicc/ and
following the following steps to install the library:

$tar xzf cgicc-X.X.X.tar.gz
$cd cgicc-X.X.X/
$./configure --prefix=/usr
$make

$make install

You can check related documentation available at C++ CGI Lib Documentation.

GET and POST Methods

You must have come across many situations when you need to pass some information from your
browser to web server and ultimately to your CGI Program. Most frequently browser uses two
methods two pass this information to web server. These methods are GET Method and POST
Method.

Passing Information using GET method:

The GET method sends the encoded user information appended to the page request. The page
and the encoded information are separated by the ? character as follows:

http://www.test.com/cgi-bin/cpp.cgi?keyl=valuel&key2=value2

The GET method is the default method to pass information from browser to web server and it
produces a long string that appears in your browser's Location:box. Never use the GET method if
you have password or other sensitive information to pass to the server. The GET method has size
limitation and you can pass upto 1024 characters in a request string.

When using GET method, information is passed using QUERY_STRING http header and will be
accessible in your CGI Program through QUERY_STRING environment variable

You can pass information by simply concatenating key and value pairs alongwith any URL or you
can use HTML <FORM> tags to pass information using GET method.

Simple URL Example : Get Method

Here is a simple URL which will pass two values to hello_get.py program using GET method.
/cgi-bin/cpp_get.cgi?first name=ZARA&last hame=ALI

Below is program to generate cpp_get.cgi CGI program to handle input given by web browser. We
are going to use C++ CGl library which makes it very easy to access passed information:

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader .h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()

{

Cgicc formData;

ftp://ftp.gnu.org/gnu/cgicc/
http://www.gnu.org/software/cgicc/doc/index.html
/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI

cout << "Content-type:text/htmI\r\n\r\n";

cout << "<html>\n";

cout << "<head>\n";

cout << "<title>Using GET and POST Methods</title>\n";
cout << "</head>\n";

cout << "<body>\n";

form_iterator fi = formData.getElement("first name");
if(!fi->isEmpty() && fi != (*formData).end()) {
cout << "First name: " << **fi << endl;
telse{
cout << "No text entered for first name" << endl;
}
cout << "
\n";
fi = formData.getElement("last name");
if(!fi->isEmpty() &&fi != (*formData).end()) {
cout << "Last name: " << **fi << endl;
telse{
cout << "No text entered for last name" << endl;
}
cout << '"
\n";

cout << "</body>\n";
cout << "</html>\n";

return 0;

}
Now, compile the above program as follows:
$g++ -0 cpp_get.cgi cpp_get.cpp -lcgicc

Generate cpp_get.cgi and putitin your CGI directory and try to access using following link:
/cgi-bin/cpp_get.cgi?first name=ZARA&last hame=ALI

This would generate following result:

First name: ZARA
Last name: ALI

Simple FORM Example: GET Method

Here is a simple example which passes two values using HTML FORM and submit button. We are
going to use same CGlI script cpp_get.cgi to handle this input.

<form action="/cgi-bin/cpp_get.cgi" method="get">
First Name: <input type="text" name="first name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />
</form>

Here is the actual output of the above form, You enter First and Last Name and then click submit
button to see the result.

First Name:

Last Name:

Passing Information using POST method:

A generally more reliable method of passing information to a CGI program is the POST method.
This packages the information in exactly the same way as GET methods, but instead of sending it

/cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI

as a text string after a 7 in the URL it sends it as a separate message. This message comes into the
CGl script in the form of the standard input.

The same cpp_get.cgi program will handle POST method as well. Let us take same example as
above, which passes two values using HTML FORM and submit button but this time with POST
method as follows:

<form action="/cgi-bin/cpp_get.cgi" method="post">
First Name: <input type="text" name="first name">

Last Name: <input type="text" name="last name" />

<input type="submit" value="Submit" />
</form>

Here is the actual output of the above form, You enter First and Last Name and then click submit
button to see the result.

First Name:

Last Name:

Passing Checkbox Data to CGI Program
Checkboxes are used when more than one option is required to be selected.

Here is example HTML code for a form with two checkboxes

<form action="/cgi-bin/cpp_checkbox.cgi"

method="POST"

target="_blank">
<input type="checkbox" name="maths" value="on" /> Maths
<input type="checkbox" name="physics" value="on" /> Physics
<input type="submit" value="Select Subject" />
</form>

The result of this code is the following form
Maths Physics

Below is C++ program, which will generate cpp_checkbox.cgi script to handle input given by web
browser through checkbox button.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader .h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()
{
Cgicc formbData;
bool maths_flag, physics_flag;

cout << "Content-type:text/html\r\n\r\n";
cout << "<html>\n";
cout << '"<head>\n";

cout << '"<title>Checkbox Data to CGI</title>\n";
cout << "</head>\n";
cout << '"<body>\n";

maths_flag = formData.queryCheckbox("maths");
if(maths_flag) {
cout << "Maths Flag: ON " << endl;
telse{
cout << "Maths Flag: OFF " << endl;
}

cout << "
\n";

physics_flag = formData.queryCheckbox("physics");
if(physics_flag) {
cout << "Physics Flag: ON " << endl;
telse{
cout << "Physics Flag: OFF " << endl;
}

cout << "
\n";
cout << "</body>\n";
cout << "</html>\n";

return 0O;

}

Passing Radio Button Data to CGIl Program
Radio Buttons are used when only one option is required to be selected.

Here is example HTML code for a form with two radio button:

<form action="/cgi-bin/cpp_radiobutton.cgi"

method="post"

target="_blank">
<input type="radio" name="subject" value="maths"

checked="checked"/> Maths

<input type="radio" name="subject" value='"physics" /> Physics
<input type="submit" value="Select Subject" />
</form>

The result of this code is the following form
Maths Physics

Below is C++ program, which will generate cpp_radiobutton.cgi script to handle input given by
web browser through radio buttons.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader .h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()

{

Cgicc formbData;

cout << "Content-type:text/htmI\r\n\r\n";
cout << '"<html>\n";

cout << '"<head>\n";
cout << "<title>Radio Button Data to CGI</title>\n";
cout << "</head>\n";
cout << '"<body>\n";

form_iterator fi = formData.getElement("subject");
if(!'fi->isEmpty() && fi != (*formData).end()) {

cout << "Radio box selected: " << **fi << endl;
}

cout << "
\n";
cout << "</body>\n";
cout << "</html>\n";

return 0O;

Passing Text Area Data to CGI Program
TEXTAREA element is used when multiline text has to be passed to the CGI Program.

Here is example HTML code for a form with a TEXTAREA box:

<form action="/cgi-bin/cpp_textarea.cgi"
method="post"
target="_blank">

<textarea name="textcontent" cols="40" rows="4">

Type your text here...

</textarea>

<input type="submit" value="Submit" />

</form>

The result of this code is the following form

Type your text here...

Below is C++ program, which will generate cpp_textarea.cgi script to handle input given by web
browser through text area.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader .h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()

{

Cgicc formbData;

cout << "Content-type:text/htmI\r\n\r\n";

cout << '"<html>\n";

cout << '"<head>\n";

cout << "<title>Text Area Data to CGI</title>\n";
cout << "</head>\n";

cout << '"<body>\n";

form_iterator fi = formData.getElement("textcontent");
if(!fi->isEmpty() && fi != (*formData).end()) {
cout << "Text Content: " << **fi << endl;
telse{
cout << "No text entered" << endl;
}

cout << "
\n";
cout << "</body>\n";
cout << "</html1>\n";

return 0;

Passing Drop Down Box Data to CGI Program
Drop Down Box is used when we have many options available but only one or two will be selected.

Here is example HTML code for a form with one drop down box

<form action="/cgi-bin/cpp_dropdown.cgi"
method="post" target="_blank">

<select name="dropdown">

<option value="Maths" selected>Maths</option>

<option value="Physics">Physics</option>

</select>

<input type="submit" value="Submit"/>

</form>

The result of this code is the following form
Maths

Below is C++ program, which will generate cpp_dropdown.cgi script to handle input given by web
browser through drop down box.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader .h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()

{

Cgicc formbData;

cout << "Content-type:text/htmI\r\n\r\n";

cout << '"<html>\n";

cout << "<head>\n";

cout << '"<title>Drop Down Box Data to CGI</title>\n";
cout << "</head>\n";

cout << '"<body>\n";

form_iterator fi = formData.getElement("dropdown");

if(!'fi->isEmpty() && fi != (*formData).end()) {
cout << "value Selected: " << **fi << endl;

}

cout << "
\n";
cout << "</body>\n";
cout << "</html1>\n";

return 0;

}

Using Cookies in CGI

HTTP protocol is a stateless protocol. But for a commercial website it is required to maintain
session information among different pages. For example one user registration ends after
completing many pages. But how to maintain user's session information across all the web pages.

In many situations, using cookies is the most efficient method of remembering and tracking
preferences, purchases, commissions, and other information required for better visitor experience
or site statistics.

How It Works

Your server sends some data to the visitor's browser in the form of a cookie. The browser may
accept the cookie. If it does, it is stored as a plain text record on the visitor's hard drive. Now, when
the visitor arrives at another page on your site, the cookie is available for retrieval. Once retrieved,
your server knows/remembers what was stored.

Cookies are a plain text data record of 5 variable-length fields:

¢ Expires : The date the cookie will expire. If this is blank, the cookie will expire when the
visitor quits the browser.

e Domain : The domain name of your site.

e Path : The path to the directory or web page that set the cookie. This may be blank if you
want to retrieve the cookie from any directory or page.

¢ Secure : If this field contains the word "secure" then the cookie may only be retrieved with a
secure server. If this field is blank, no such restriction exists.

¢ Name=Value : Cookies are set and retrieved in the form of key and value pairs.

Setting up Cookies

This is very easy to send cookies to browser. These cookies will be sent along with HTTP Header
before to Content-type filed. Assuming you want to set UserID and Password as cookies. So cookies
setting will be done as follows

#include <iostream>
using namespace std;

int main ()

{

cout << "Set-Cookie:UserID=XYZ;\r\n";

cout << "Set-Cookie:Password=XYZ123;\r\n";

cout << "Set-Cookie:Domain=www.tutorialspoint.com;\r\n";
cout << "Set-Cookie:Path=/perl;\n";

cout << "Content-type:text/htmI\r\n\r\n";

cout << '"<html>\n";

cout << '"<head>\n";

cout << "<title>Cookies in CGI</title>\n";
cout << "</head>\n";

cout << '"<body>\n";

cout << "Setting cookies" << endl;

cout << "
\n";
cout << "</body>\n";

cout << "</html>\n";

return 0;

}

From this example, you must have understood how to set cookies. We use Set-Cookie HTTP
header to set cookies.

Here, it is optional to set cookies attributes like Expires, Domain, and Path. It is notable that cookies
are set before sending magic line "Content-type:text/htmi\r\n\r\n.

Compile above program to produce setcookies.cgi, and try to set cookies using following link. It will
set four cookies at your computer:

/cgi-bin/setcookies.cgi
Retrieving Cookies

This is very easy to retrieve all the set cookies. Cookies are stored in CGl environment variable
HTTP_COOKIE and they will have following form.

keyl=valuel;key2=value2;key3=values....

Here is an example of how to retrieving cookies.

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader .h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()

{ . .
Cgicc cgi;
const_cookie_iterator cci;

cout << "Content-type:text/htmI\r\n\r\n";

cout << '"<html>\n";

cout << '<head>\n";

cout << "<title>Cookies in CGI</title>\n";

cout << "</head>\n";

cout << '"<body>\n";

cout << '"<table border = \"O\" cellspacing = \"2\">";

// get environment variables
const CgiEnvironment& env = cgi.getEnvironment();

for(cci = env.getCookielList().begin();

cci !'= env.getCookielList().end();
++ccli)
{
cout << '"<tr><td>" << cci->getName() << "</td><td>";
cout << cci->getvValue();
cout << "</td></tr>\n";
}

cout << "</table><\n";

cout << '"
\n";
cout << "</body>\n";

/cgi-bin/setcookies.cgi

cout << "</html>\n";

return 0;

}

Now, compile above program to produce getcookies.cgi, and try to get a list of all the cookies
available at your computer:

/cgi-bin/getcookies.cgi

This will produce a list of all the four cookies set in previous section and all other cookies set at
your computer:

UserID XYZ

Password XYzZ123

Domain www.tutorialspoint.com
Path /perl

File Upload Example:

To upload a file the HTML form must have the enctype attribute set to multipart/form-data. The
input tag with the file type will create a "Browse" button.

<html>
<body>
<form enctype="multipart/form-data"
action="/cgi-bin/cpp_uploadfile.cgi"
method="post">
<p>File: <input type="file" name="userfile" /></p>
<p><input type="submit" value="Upload" /></p>
</form>
</body>
</htm1>

The result of this code is the following form:

File:

Note: Above example has been disabled intentionally to save people uploading files on our
server. But you can try above code with your server.

Here is the script cpp_uploadfile.cpp to handle file upload:

#include <iostream>
#include <vector>
#include <string>
#include <stdio.h>
#include <stdlib.h>

#include <cgicc/CgiDefs.h>
#include <cgicc/Cgicc.h>
#include <cgicc/HTTPHTMLHeader .h>
#include <cgicc/HTMLClasses.h>

using namespace std;
using namespace cgicc;

int main ()

{

Cgicc cgi;

cout << "Content-type:text/htmI\r\n\r\n";
cout << "<html>\n";

/cgi-bin/getcookies.cgi

cout << '"<head>\n";

cout << '"<title>File Upload in CGI</title>\n";
cout << "</head>\n";

cout << '"<body>\n";

// get list of files to be uploaded
const_file_iterator file = cgi.getFile("userfile");
if(file != cgi.getFiles().end()) {
// send data type at cout.
cout << HTTPContentHeader (file->getDataType());
// write content at cout.
file->writeToStream(cout);
}
cout << "<File uploaded successfully>\n";
cout << "</body>\n";
cout << "</html>\n";

return 0;

The above example is writing content at cout stream but you can open your file stream and save
the content of uploaded file in a file at desired location.

Hana vnu aninuad thic tutarial If vac plegse send me your feedback at: Contact Us
Loading [Mathjax]/jax/output/HTML-CSS/jax.js

/about/contact_us.htm

