C++ VARIABLE TYPES

A variable provides us with named storage that our programs can manipulate. Each variable in
C++ has a specific type, which determines the size and layout of the variable's memory; the range
of values that can be stored within that memory; and the set of operations that can be applied to
the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must
begin with either a letter or an underscore. Upper and lowercase letters are distinct because C++
is case-sensitive:

There are following basic types of variable in C++ as explained in last chapter:

Type Description

bool Stores either value true or false.

char Typically a single octetonebyte. This is an integer type.
int The most natural size of integer for the machine.
float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

wchar_t A wide character type.

C++ also allows to define various other types of variables, which we will cover in subsequent
chapters like Enumeration, Pointer, Array, Reference, Data structures, and Classes.

Following section will cover how to define, declare and use various types of variables.
Variable Definition in C++:

A variable definition means to tell the compiler where and how much to create the storage for the
variable. A variable definition specifies a data type, and contains a list of one or more variables of
that type as follows:

type variable_list;

Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any
user-defined object, etc., and variable_list may consist of one or more identifier names separated
by commas. Some valid declarations are shown here:

int i, j, k;
char c, ch;
float f, salary;
double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler
to create variables named i, j and k of type int.

Variables can be initialized assignedaninitialvalue in their declaration. The initializer consists of an
equal sign followed by a constant expression as follows:

type variable_name = value;


http://www.tutorialspoint.com/cplusplus/cpp_variable_types.htm

Some examples are:

extern int d = 3, f = 5; // declaration of d and f.

intd =3, f =5; // definition and initializing d and f.
byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly initialized
with NULL allbyteshavethevalueQ; the initial value of all other variables is undefined.

Variable Declaration in C++:

A variable declaration provides assurance to the compiler that there is one variable existing with
the given type and name so that compiler proceed for further compilation without needing
complete detail about the variable. A variable declaration has its meaning at the time of
compilation only, compiler needs actual variable declaration at the time of linking of the program.

A variable declaration is useful when you are using multiple files and you define your variable in
one of the files which will be available at the time of linking of the program. You will use extern
keyword to declare a variable at any place. Though you can declare a variable multiple times in
your C++ program, but it can be defined only once in a file, a function or a block of code.

Example

Try the following example where a variable has been declared at the top, but it has been defined
inside the main function:

#include <iostream>
using namespace std;

// Variable declaration:
extern int a, b;

extern int c;

extern float f;

int main ()
{
// Variable definition:
int a, b;
int c;
float f;

// actual initialization
a= 10,

b 20;

c a+b;

cout << c¢ << endl ;

f = 70.0/3.0;
cout << f << endl ;

return 0;

}

When the above code is compiled and executed, it produces the following result:

30
23 . FSI)

Same concept applies on function declaration where you provide a function name at the time of its
declaration and its actual definition can be given anywhere else. For example:

// function declaration
int func();



int main()

// function call
int i = func();

}
// function definition
int func()
{
return 0;
}

Lvalues and Rvalues:
There are two kinds of expressions in C++:

¢ lvalue : Expressions that refer to a memory location is called "lvalue" expression. An Ivalue
may appear as either the left-hand or right-hand side of an assignment.

e rvalue : The term rvalue refers to a data value that is stored at some address in memory. An
rvalue is an expression that cannot have a value assigned to it which means an rvalue may
appear on the right- but not left-hand side of an assignment.

Variables are Ivalues and so may appear on the left-hand side of an assignment. Numeric literals

are rvalues and so may not be assighed and can not appear on the left-hand side. Following is a
valid statement:

int g = 20;
But following is not a valid statement and would generate compile-time error:

10 = 20:
Loading [Mathjax]/jax/output/HTML-CSS/jax.js



