
http://www.tutorialspoint.com/cplusplus/cpp_stl_tutorial.htm Copyright © tutorialspoint.com

C++ STL TUTORIALC++ STL TUTORIAL

Hope you already understand the concept of C++ Template which we already have discussed in
one of the chapters. The C++ STL StandardTemplateLibrary is a powerful set of C++ template classes
to provides general-purpose templatized classes and functions that implement many popular and
commonly used algorithms and data structures like vectors, lists, queues, and stacks.

At the core of the C++ Standard Template Library are following three well-structured components:

Component Description

Containers Containers are used to manage collections of objects of a certain
kind. There are several different types of containers like deque,
list, vector, map etc.

Algorithms Algorithms act on containers. They provide the means by which
you will perform initialization, sorting, searching, and transforming
of the contents of containers.

Iterators Iterators are used to step through the elements of collections of
objects. These collections may be containers or subsets of
containers.

We will discuss about all the three C++ STL components in next chapter while discussing C++
Standard Library. For now, keep in mind that all the three components have a rich set of pre-
defined functions which help us in doing complicated tasks in very easy fashion.

Let us take the following program demonstrates the vector container aC + + StandardTemplate which is
similar to an array with an exception that it automatically handles its own storage requirements in
case it grows:

#include <iostream>
#include <vector>
using namespace std;

int main()
{
 // create a vector to store int
 vector<int> vec;
 int i;

 // display the original size of vec
 cout << "vector size = " << vec.size() << endl;

 // push 5 values into the vector
 for(i = 0; i < 5; i++){
 vec.push_back(i);
 }

 // display extended size of vec
 cout << "extended vector size = " << vec.size() << endl;

 // access 5 values from the vector
 for(i = 0; i < 5; i++){
 cout << "value of vec [" << i << "] = " << vec[i] << endl;
 }

 // use iterator to access the values
 vector<int>::iterator v = vec.begin();
 while(v != vec.end()) {
 cout << "value of v = " << *v << endl;
 v++;

http://www.tutorialspoint.com/cplusplus/cpp_stl_tutorial.htm

 }

 return 0;
}

When the above code is compiled and executed, it produces the following result:

vector size = 0
extended vector size = 5
value of vec [0] = 0
value of vec [1] = 1
value of vec [2] = 2
value of vec [3] = 3
value of vec [4] = 4
value of v = 0
value of v = 1
value of v = 2
value of v = 3
value of v = 4

Here are following points to be noted related to various functions we used in the above example:

The push_back member function inserts value at the end of the vector, expanding its size as
needed.

The size function displays the size of the vector.

The function begin returns an iterator to the start of the vector.

The function end returns an iterator to the end of the vector.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

