C++ MULTI-DIMENSIONAL ARRAYS

C++ allows multidimensional arrays. Here is the general form of a multidimensional array
declaration:

type name[sizel][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5. 10 . 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays:

The simplest form of the multidimensional array is the two-dimensional array. A two-dimensional
array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of
size x,y, you would write something as follows:

type arrayName [ x [[ vy 1;

Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.

A two-dimensional array can be think as a table, which will have x number of rows and y number of

columns. A 2-dimensional array a, which contains three rows and four columns can be shown as
below:

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] a[0]1] a[0][2] alo][3]
Row 1 a[1][0] af1][1] a[1][2] al1][3]
Row 2 a[2][0] a[2][1] a[2][2] a[2][3]

Thus, every elementin array a is identified by an element name of the formal[i I[ j 1, where a is
the name of the array, and i and j are the subscripts that uniquely identify each elementin a.

Initializing Two-Dimensional Arrays:

Multidimensioned arrays may be initialized by specifying bracketed values for each row. Following
isan array with 3 rows and each row have 4 columns.

int a[3][4] = {

{0, 1, 2, 3}, /* initializers for row indexed by 0 */
{4, 5, 6, 7} , /* initializers for row indexed by 1 */
{8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following initialization is
equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11}%};

Accessing Two-Dimensional Array Elements:

An elementin 2-dimensional array is accessed by using the subscripts, i.e., row index and column
index of the array. For example:

int val = a[2][3];
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The above statement will take 4th element from the 3rd row of the array. You can verify itin the
above digram.

#include <iostream>
using namespace std;

int main ()
{

// an array with 5 rows and 2 columns.
int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

// output each array element's value
for (int 1 = 0; 1 < 5; i++ )
for (int j = 0; j < 2; j++ )
{
Cout << Ila[ll << l << II][II << J << ||]: “;
cout << a[i][j]<< endl;

}

return 0;

}

When the above code is compiled and executed, it produces the following result:

a[0][0]:
a[o0][1]:
a[1][0]:
a[1][1]:
a[2][0]:
a[2][1]:
a[3][0]:
a[3][1]:
a[4][0]:
a[4][1]:
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As explained above, you can have arrays with any number of dimensions, although it is likely that
most of the arrays you create will be of one or two dimensions.



