
http://www.tutorialspoint.com/cplusplus/cpp_multi_dimensional_arrays.htm Copyright © tutorialspoint.com

C++ MULTI-DIMENSIONAL ARRAYSC++ MULTI-DIMENSIONAL ARRAYS

C++ allows multidimensional arrays. Here is the general form of a multidimensional array
declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5 . 10 . 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays:
The simplest form of the multidimensional array is the two-dimensional array. A two-dimensional
array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of
size x,y, you would write something as follows:

type arrayName [x][y];

Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.

A two-dimensional array can be think as a table, which will have x number of rows and y number of
columns. A 2-dimensional array a, which contains three rows and four columns can be shown as
below:

Thus, every element in array a is identified by an element name of the form a[i][j], where a is
the name of the array, and i and j are the subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays:
Multidimensioned arrays may be initialized by specifying bracketed values for each row. Following
is an array with 3 rows and each row have 4 columns.

int a[3][4] = {
 {0, 1, 2, 3} , /* initializers for row indexed by 0 */
 {4, 5, 6, 7} , /* initializers for row indexed by 1 */
 {8, 9, 10, 11} /* initializers for row indexed by 2 */
};

The nested braces, which indicate the intended row, are optional. The following initialization is
equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements:
An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and column
index of the array. For example:

int val = a[2][3];

http://www.tutorialspoint.com/cplusplus/cpp_multi_dimensional_arrays.htm

The above statement will take 4th element from the 3rd row of the array. You can verify it in the
above digram.

#include <iostream>
using namespace std;

int main ()
{
 // an array with 5 rows and 2 columns.
 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

 // output each array element's value
 for (int i = 0; i < 5; i++)
 for (int j = 0; j < 2; j++)
 {
 cout << "a[" << i << "][" << j << "]: ";
 cout << a[i][j]<< endl;
 }

 return 0;
}

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0
a[0][1]: 0
a[1][0]: 1
a[1][1]: 2
a[2][0]: 2
a[2][1]: 4
a[3][0]: 3
a[3][1]: 6
a[4][0]: 4
a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although it is likely that
most of the arrays you create will be of one or two dimensions.

