C++ MULTI-DIMENSIONAL ARRAYS

C++ allows multidimensional arrays. Here is the general form of a multidimensional array
declaration:

type name[sizel][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5. 10 . 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays:

The simplest form of the multidimensional array is the two-dimensional array. A two-dimensional
array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of
size x,y, you would write something as follows:

type arrayName [x [[vy 1;

Where type can be any valid C++ data type and arrayName will be a valid C++ identifier.

A two-dimensional array can be think as a table, which will have x number of rows and y number of

columns. A 2-dimensional array a, which contains three rows and four columns can be shown as
below:

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] a[0]1] a[0][2] alo][3]
Row 1 a[1][0] af1][1] a[1][2] al1][3]
Row 2 a[2][0] a[2][1] a[2][2] a[2][3]

Thus, every elementin array a is identified by an element name of the formal[i I[j 1, where a is
the name of the array, and i and j are the subscripts that uniquely identify each elementin a.

Initializing Two-Dimensional Arrays:

Multidimensioned arrays may be initialized by specifying bracketed values for each row. Following
isan array with 3 rows and each row have 4 columns.

int a[3][4] = {

{0, 1, 2, 3}, /* initializers for row indexed by 0 */
{4, 5, 6, 7} , /* initializers for row indexed by 1 */
{8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following initialization is
equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11}%};

Accessing Two-Dimensional Array Elements:

An elementin 2-dimensional array is accessed by using the subscripts, i.e., row index and column
index of the array. For example:

int val = a[2][3];

http://www.tutorialspoint.com/cplusplus/cpp_multi_dimensional_arrays.htm

The above statement will take 4th element from the 3rd row of the array. You can verify itin the
above digram.

#include <iostream>
using namespace std;

int main ()
{

// an array with 5 rows and 2 columns.
int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

// output each array element's value
for (int 1 = 0; 1 < 5; i++)
for (int j = 0; j < 2; j++)
{
Cout << Ila[ll << l << II][II << J << ||]: “;
cout << a[i][j]<< endl;

}

return 0;

}

When the above code is compiled and executed, it produces the following result:

a[0][0]:
a[o0][1]:
a[1][0]:
a[1][1]:
a[2][0]:
a[2][1]:
a[3][0]:
a[3][1]:
a[4][0]:
a[4][1]:

OrhOWPNNR OO

As explained above, you can have arrays with any number of dimensions, although it is likely that
most of the arrays you create will be of one or two dimensions.

