C++ ARRAYS

C++ provides a data structure, the array, which stores a fixed-size sequential collection of
elements of the same type. An array is used to store a collection of data, but it is often more useful
to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, numberl, ..., and number99, you
declare one array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99]
to represent individual variables. A specific elementin an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.

Declaring Arrays:

To declare an array in C++, the programmer specifies the type of the elements and the number of
elements required by an array as follows:

type arrayName [arraySize];

This is called a single-dimension array. The arraySize must be an integer constant greater than
zero and type can be any valid C++ data type. For example, to declare a 10-element array called
balance of type double, use this statement:

double balance[10];

Initializing Arrays:

You can initialize C++ array elements either one by one or using a single statement as follows:

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

The number of values between braces { } can not be larger than the number of elements that we
declare for the array between square brackets []. Following is an example to assign a single
element of the array:

If you omit the size of the array, an array just big enough to hold the initialization is created.
Therefore, if you write:

double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};

You will create exactly the same array as you did in the previous example.

balance[4] = 50.0;

The above statement assigns element number 5th in the array a value of 50.0. Array with 4th
index will be 5th, i.e., last element because all arrays have 0 as the index of their first element
which is also called base index. Following is the pictorial representaion of the same array we
discussed above:

0 1 2 3 4

balance 1000.0 2.0 3.4 7.0 50.0

Accessing Array Elements:

An elementis accessed by indexing the array name. This is done by placing the index of the
element within square brackets after the name of the array. For example:

http://www.tutorialspoint.com/cplusplus/cpp_arrays.htm

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to salary variable.
Following is an example, which will use all the above-mentioned three concepts viz. declaration,

assignment and accessing arrays:

#include <iostream>
using namespace std;

#include <iomanip>
using std::setw;

int main ()

nf[i] =i + 100; // set element at location i to i + 100

{
int n[10]; // n is an array of 10 integers
// initialize elements of array n to 0
for (int 1 = 0; 1 < 10; i++)
{
}
cout << "Element" << setw(13) << "Value" << endl;
// output each array element's value
for (int j = 0; j < 10; j++)
{
cout << setw(7)<< j << setw(13) << n[j] << endl;
}
return 0O;
}

This program makes use of setw function to format the output. When the above code is compiled
and executed, it produces the following result:

Element Value
100
101
102
103
104
105
106
107
108
109

©CoOoO~NOUDhWNREO

C++ Arrays in Detail:

Arrays are important to C++ and should need lots of more detail. There are following few
important concepts, which should be clear to a C++ programmer:

Concept

Multi-dimensional arrays

Pointer to an array

Passing arrays to functions

Description

C++ supports multidimensional arrays. The simplest
form of the multidimensional array is the two-
dimensional array.

You can generate a pointer to the first element of an
array by simply specifying the array name, without any
index.

You can pass to the function a pointer to an array by
specifying the array's name without an index.

/cplusplus/cpp_multi_dimensional_arrays.htm
/cplusplus/cpp_pointer_to_an_array.htm
/cplusplus/cpp_passing_arrays_to_functions.htm

. C++ allows a function to return an array.
Return array from functions

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

/cplusplus/cpp_return_arrays_from_functions.htm

