DIGITAL NUMBER SYSTEM

http://www.tutorialspoint.com/computer logical organization/digital number system.htm

Copyright © tutorialspoint.com

A digital system can understand positional number system only where there are a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.

A value of each digit in a number can be determined using

- The digit
- The position of the digit in the number
- The base of the number system wherebaseisdefinedasthetotalnumberofdigitsavailableinthenumbersystem.

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represents units, tens, hundreds, thousands and so on.

Each position represents a specific power of the base 10. For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value can be written as

```
(1&times1000) + (2&times100) + (3&times10) + (4&times1) (1&times10^3) + (2&times10^2) + (3&times10^1) + (4&times10^0) 1000 + 200 + 30 + 1 1234
```

As a computer programmer or an IT professional, you should understand the following number systems which are frequently used in computers.

S.N. Number System & Description

1 Binary Number System

Base 2. Digits used: 0, 1

2 Octal Number System

Base 8. Digits used: 0 to 7

3 Hexa Decimal Number System

Base 16. Digits used: 0 to 9, Letters used: A-F

Binary Number System

Characteristics

- Uses two digits, 0 and 1.
- Also called base 2 number system
- Each position in a binary number represents a 0 power of the base 2. Example: 20

• Last position in a binary number represents an x power of the base 2. Example: 2^x where x represents the last position - 1.

Example

Binary Number: 10101₂

Calculating Decimal Equivalent -

Step	Binary Number	Decimal Number
Step 1	10101 ₂	((1 \times 2 4) + (0 \times 2 3) + (1 \times 2 2) + (0 \times 2 1) + (1 \times 2 0)) $_{10}$
Step 2	10101 ₂	16 + 0 + 4 + 1 10
Step 3	10101 ₂	21 ₁₀

Note: 10101_2 is normally written as 10101.

Octal Number System

Characteristics

- Uses eight digits, 0,1,2,3,4,5,6,7.
- Also called base 8 number system
- Each position in an octal number represents a 0 power of the base 8. Example: 80
- Last position in an octal number represents an x power of the base 8. Example: 8^x where x represents the last position 1.

Example

Octal Number – 125708

Calculating Decimal Equivalent -

Step	Octal Number	Decimal Number
Step 1	125708	((1 \times 8 ⁴) + (2 \times 8 ³) + (5 \times 8 ²) + (7 \times 8 ¹) + (0 \times 8 ⁰)) ₁₀
Step 2	12570 ₈	4096 + 1024 + 320 + 56 + 0
Step 3	12570 ₈	5496 ₁₀

Note: 12570₈ is normally written as 12570.

Hexadecimal Number System

Characteristics

Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

- Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.
- Also called base 16 number system.
- \bullet Each position in a hexadecimal number represents a 0 power of the base 16. Example 16⁰.
- Last position in a hexadecimal number represents an x power of the base 16. Example 16^x where x represents the last position - 1.

Example -

Hexadecimal Number: 19FDE₁₆

Calculating Decimal Equivalent -

Step	Binary Number	Decimal Number
Step 1	19FDE ₁₆	((1 \times 16 4) + (9 \times 16 3) + (F \times 16 2) + (D \times 16 1) + (E \times 16 0)) $_{10}$
Step 2	19FDE ₁₆	((1 \times 16^4) + (9 \times 16^3) + (15 \times 16^2) + (13 \times 16^1) + (14 \times 16^0))10
Step 3	19FDE ₁₆	65536 + 36864 + 3840 + 208 + 14 10
Step 4	19FDE ₁₆	106462 ₁₀

Note – 19FDF₁₆ is normally written as 19FDE. Loading [MathJax]/jax/output/HTML-CSS/jax.js