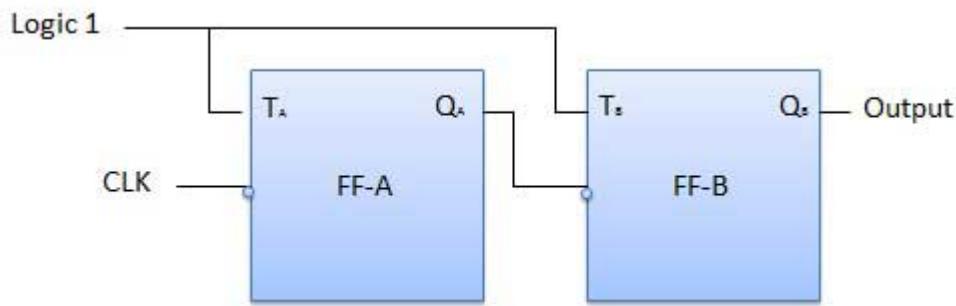


DIGITAL COUNTERS


Counter is a sequential circuit. A digital circuit which is used for a counting pulses is known counter. Counter is the widest application of flip-flops. It is a group of flip-flops with a clock signal applied. Counters are of two types.

- Asynchronous or ripple counters.
- Synchronous counters.

Asynchronous or ripple counters

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle T flip-flop are being used. But we can use the JK flip-flop also with J and K connected permanently to logic 1. External clock is applied to the clock input of flip-flop A and Q_A output is applied to the clock input of the next flip-flop i.e. FF-B.

Logical Diagram

Operation

S.N.	Condition	Operation
1	Initially let both the FFs be in the reset state	$Q_B Q_A = 00$ initially
2	After 1st negative clock edge	As soon as the first negative clock edge is applied, FF-A will toggle and Q_A will be equal to 1. Q_A is connected to clock input of FF-B. Since Q_A has changed from 0 to 1, it is treated as the positive clock edge by FF-B. There is no change in Q_B because FF-B is a negative edge triggered FF. $Q_B Q_A = 01$ after the first clock pulse.
3	After 2nd negative clock edge	On the arrival of second negative clock edge, FF-A toggles again and $Q_A = 0$. The change in Q_A acts as a negative clock edge for FF-B. So it will also toggle, and Q_B will be 1.

$Q_B Q_A = 10$ after the second clock pulse.

4 After 3rd negative clock edge

On the arrival of 3rd negative clock edge, FF-A toggles again and Q_A becomes 1 from 0.

Since this is a positive going change, FF-B does not respond to it and remains inactive. So Q_B does not change and continues to be equal to 1.

$Q_B Q_A = 11$ after the third clock pulse.

5 After 4th negative clock edge

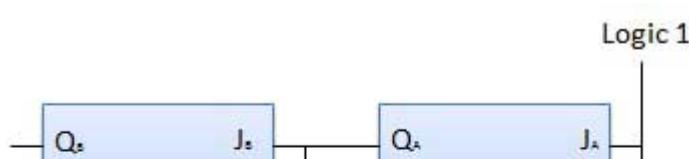
On the arrival of 4th negative clock edge, FF-A toggles again and Q_A becomes 1 from 0.

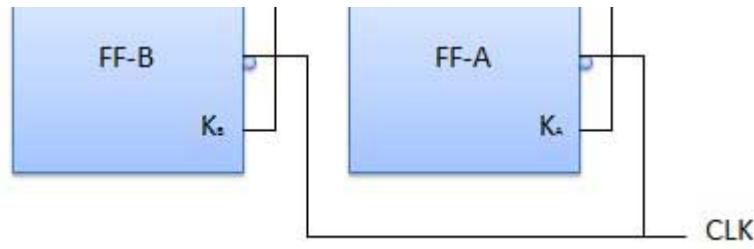
This negative change in Q_A acts as clock pulse for FF-B. Hence it toggles to change Q_B from 1 to 0.

$Q_B Q_A = 00$ after the fourth clock pulse.

Truth Table

Clock	Counter output		State number	Decimal Counter output
	Q_S	Q_A		
Initially	0	0	—	0
1st	0	1	1	1
2nd	1	0	2	2
3rd	1	1	3	3
4th	0	0	4	0


Synchronous counters


If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then such a counter is called as synchronous counter.

2-bit Synchronous up counter

The J_A and K_A inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-flop. The J_B and K_B inputs are connected to Q_A .

Logical Diagram

Operation

S.N.	Condition	Operation
1	Initially let both the FFs be in the reset state	$Q_B Q_A = 00$ initially.
2	After 1st negative clock edge	<p>As soon as the first negative clock edge is applied, FF-A will toggle and Q_A will change from 0 to 1.</p> <p>But at the instant of application of negative clock edge, $Q_A, J_B = K_B = 0$. Hence FF-B will not change its state. So Q_B will remain 0.</p> <p>$Q_B Q_A = 01$ after the first clock pulse.</p>
3	After 2nd negative clock edge	<p>On the arrival of second negative clock edge, FF-A toggles again and Q_A changes from 1 to 0.</p> <p>But at this instant Q_A was 1. So $J_B = K_B = 1$ and FF-B will toggle. Hence Q_B changes from 0 to 1.</p> <p>$Q_B Q_A = 10$ after the second clock pulse.</p>
4	After 3rd negative clock edge	<p>On application of the third falling clock edge, FF-A will toggle from 0 to 1 but there is no change of state for FF-B.</p> <p>$Q_B Q_A = 11$ after the third clock pulse.</p>
5	After 4th negative clock edge	<p>On application of the next clock pulse, Q_A will change from 1 to 0 as Q_B will also change from 1 to 0.</p> <p>$Q_B Q_A = 00$ after the fourth clock pulse.</p>

Classification of counters

Depending on the way in which the counting progresses, the synchronous or asynchronous counters are classified as follows –

- Up counters

- Down counters
- Up/Down counters

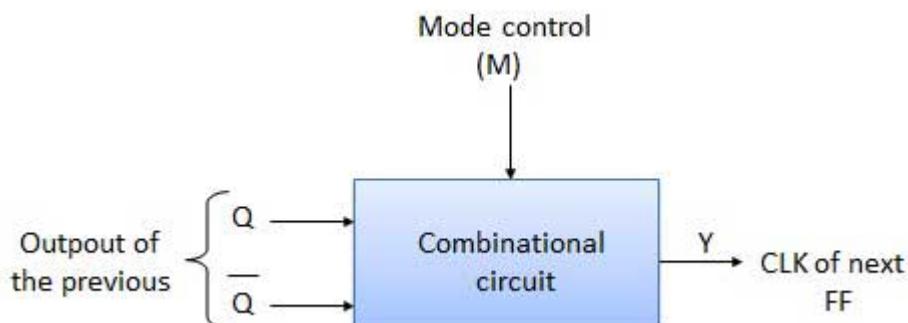
UP/DOWN Counter

Up counter and down counter is combined together to obtain an UP/DOWN counter. A mode control M input is also provided to select either up or down mode. A combinational circuit is required to be designed and used between each pair of flip-flop in order to achieve the up/down operation.

- Type of up/down counters
- UP/DOWN ripple counters
- UP/DOWN synchronous counter

UP/DOWN Ripple Counters

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So either T flip-flops or JK flip-flops are to be used. The LSB flip-flop receives clock directly. But the clock to every other FF is obtained from $Q = Q_{bar}$ output of the previous FF.


- **UP counting mode $M = 0$** – The Q output of the preceding FF is connected to the clock of the next stage if up counting is to be achieved. For this mode, the mode select input M is at logic 0 $M = 0$.
- **DOWN counting mode $M = 1$** – If $M = 1$, then the Q_{bar} output of the preceding FF is connected to the next FF. This will operate the counter in the counting mode.

Example

3-bit binary up/down ripple counter.

- 3-bit – hence three FFs are required.
- UP/DOWN – So a mode control input is essential.
- For a ripple up counter, the Q output of preceding FF is connected to the clock input of the next one.
- For a ripple up counter, the Q output of preceding FF is connected to the clock input of the next one.
- For a ripple down counter, the Q_{bar} output of preceding FF is connected to the clock input of the next one.
- Let the selection of Q and Q_{bar} output of the preceding FF be controlled by the mode control input M such that, If $M = 0$, UP counting. So connect Q to CLK. If $M = 1$, DOWN counting. So connect Q_{bar} to CLK.

Block Diagram

Truth Table

Inputs			Outputs
M	Q	\bar{Q}	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
	0	1	1
	1	0	0
	1	1	1

Operation

S.N. Condition

Operation

1 Case 1 – With M = 0 Upcounting mode

If M = 0 and M bar = 1, then the AND gates 1 and 3 in fig. will be enabled whereas the AND gates 2 and 4 will be disabled.

Hence Q_A gets connected to the clock input of FF-B and Q_B gets connected to the clock input of FF-C.

These connections are same as those for the normal up counter. Thus with M = 0 the circuit work as an up counter.

2 Case 2: With M = 1 Downcounting mode

If M = 1, then AND gates 2 and 4 in fig. are enabled whereas the AND gates 1 and 3 are disabled.

Hence Q_A bar gets connected to the clock input of FF-B and Q_B bar gets connected to the clock input of FF-C.

These connections will produce a down counter. Thus with M = 1 the circuit works as a down counter.

Modulus Counter MOD – NCounter

The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is called as MOD-8 counter. So in general, an n-bit ripple counter is called as modulo-N counter. Where, MOD number = 2^n .

Type of modulus

- 2-bit up or down MOD – 4
- 3-bit up or down MOD – 8

- 4-bit up or down $MOD - 16$

Application of counters

- Frequency counters
- Digital clock
- Time measurement
- A to D converter
- Frequency divider circuits
- ~~Digital triangular wave generator.~~

Loading [MathJax]/jax/output/HTML-CSS/jax.js