COMPUTER - NUMBER SYSTEM

http://www.tutorialspoint.com/computer fundamentals/computer number system.htm

Copyright © tutorialspoint.com

When we type some letters or words, the computer translates them in numbers as computers can understand only numbers. A computer can understand positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.

A value of each digit in a number can be determined using

- The digit
- The position of the digit in the number
- The base of the number system wherebaseisdefinedasthetotalnumberofdigitsavailableinthenumbersystem.

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands and so on.

Each position represents a specific power of the base 10. For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value can be written as

```
(1\times1000)+ (2\times100)+ (3\times10)+ (4\times1)

(1\times10^3)+ (2\times10^2)+ (3\times10^1)+ (4\times10^0)

1000 + 200 + 30 + 4

1234
```

As a computer programmer or an IT professional, you should understand the following number systems which are frequently used in computers.

S.N. Number System and Description

1 Binary Number System

Base 2. Digits used: 0, 1

2 Octal Number System

Base 8. Digits used: 0 to 7

3 Hexa Decimal Number System

Base 16. Digits used: 0 to 9, Letters used: A-F

Binary Number System

Characteristics of binary number system are as follows:

Uses two digits, 0 and 1.

- Also called base 2 number system
- Each position in a binary number represents a 0 power of the base 2. Example 2⁰
- Last position in a binary number represents a x power of the base 2. Example 2^x where x represents the last position 1.

Example

Binary Number: 101012

Calculating Decimal Equivalent:

Step	Binary Number	Decimal Number
Step 1	10101 ₂	$((1\times 2^4) + (0\times 2^3) + (1\times 2^2) + (0\times 2^1) + (1\times 2^0))_{10}$
Step 2	10101 ₂	16 + 0 + 4 + 0 + 1 ₁₀
Step 3	10101 ₂	21 ₁₀

Note: 10101₂ is normally written as 10101.

Octal Number System

Characteristics of octal number system are as follows:

- Uses eight digits, 0,1,2,3,4,5,6,7.
- Also called base 8 number system
- Each position in an octal number represents a 0 power of the base 8. Example 80
- Last position in an octal number represents a x power of the base 8. Example 8^x where x represents the last position 1.

Example

Octal Number: 125708

Calculating Decimal Equivalent:

Step	Octal Number	Decimal Number
Step 1	12570 ₈	$((1 \times 8^4) + (2 \times 8^3) + (5 \times 8^2) + (7 \times 8^1) + (0 \times 8^0))_{10}$
Step 2	12570 ₈	4096 + 1024 + 320 + 56 + 0 ₁₀
Step 3	12570 ₈	5496 ₁₀

Note: 12570₈ is normally written as 12570.

Hexadecimal Number System

Characteristics of hexadecimal number system are as follows:

• Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

- Letters represents numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15.
- Also called base 16 number system
- Each position in a hexadecimal number represents a 0 power of the base 16. Example 16⁰
- Last position in a hexadecimal number represents a x power of the base 16. Example 16^X where x represents the last position - 1.

Example

Hexadecimal Number: 19FDE₁₆ Calculating Decimal Equivalent:

Step	Binary Number	Decimal Number
Step 1	19FDE ₁₆	$((1 \times 16^4) + (9 \times 16^3) + (F \times 16^2) + (D \times 16^1) + (E \times 16^0))_{10}$
Step 2	19FDE ₁₆	$((1 \times 16^4) + (9 \times 16^3) + (15 \times 16^2) + (13 \times 16^1) + (14 \times 16^0))_{10}$
Step 3	19FDE ₁₆	65536 + 36864 + 3840 + 208 + 14 ₁₀
Step 4	19FDE ₁₆	106462 ₁₀

Note: 19FDF16 is normally written as 19FDE. Loading [MathJax]/jax/output/HTML-CSS/jax.js