Compare the following numbers:
$(i)$. $2.7\times10^{12};\ 1.5\times10^8$
$(ii)$. $4\times10^{14};\ 3\times10^{17}$

AcademicMathematicsNCERTClass 7

Given:

Given numbers are

$(i)$. $2.7\times10^{12};\ 1.5\times10^8$

$(ii)$. $4\times10^{14};\ 3\times10^{17}$

To do:

We have to compare the given numbers.

Solution:

$(i)$. $2.7 \times 10^{12} = 2.7 \times 10^8 \times 10^4$

$=(2.7\times10000)\times10^8$

$=27000\times10^8$

As $27000>1.5$

$27000\times10^8 > 1.5\times10^8$

Therefore,

$2.7 \times 10^{12} > 1.5\times10^8$.

$(ii)$. $3 \times 10^{17} = 3 \times 10^3 \times 10^{14}$

$=(3\times1000)\times10^{14}$

$=3000\times10^{14}$

As $3000>4$

$3000\times10^{14} > 4\times10^{14}$

Therefore,

$3 \times 10^{17} > 4\times10^{14}$.

raja
Updated on 10-Oct-2022 13:38:51

Advertisements